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Shockwaves from Ukraine: Trends and Gaps in 

Agricultural Commodity Prices 

Olga Bondarenko1 

Abstract: I propose partial-equilibrium models that describe the dynamics of global wheat 

and corn markets. These models extend the classic competitive storage framework by 

incorporating nonstationary variables. They are calibrated using data from Ukraine and 

key importing and exporting countries. The models enable the endogenous estimation of 

price trends, based on the observed movements in the underlying variables. This 

framework provides insights into how involuntary reductions in Ukraine’s global market 

presence, triggered by Russia’s invasion, could have affected trend prices. 
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1. Introduction 

Headwinds of 2021-2023 have reminded policymakers in both emerging and advanced 

economies that commodity prices matter. An agnostic view of commodity price dynamics, 

typically employing futures prices, can lead to notable inflation forecast errors (Chahad et 

al., 2023). The issue is especially pertinent for emerging markets (EMs), including Ukraine, 

where food and energy comprise a substantial portion – sometimes up to 50% – of the CPI 

basket. In addition, some EMs rely on revenues from commodity exports to maintain their 

external balance and stability on the foreign exchange (FX) market. For instance, in war-

torn Ukraine, grains (mostly corn and wheat) alone accounted for 23% of total exports in 

2023, up from 18% in 2021. However, existing approaches to analyzing and forecasting 

commodity market developments offer little to no reliable guidance on medium- to long-term 

fluctuations in commodity prices. 

In this paper, I propose partial-equilibrium models of global wheat and corn markets that 

simultaneously estimate grain prices and their trends. To this end, the models include 

production and storage decisions of key exporting countries, including Ukraine, and 

importing ones. Unlike most previous studies, this study uses a nonstationary setting with 

trending supply and demand variables, following Miao et al. (2011). The models thereby 

allow for endogenous estimation of price trends, drawing upon the medium-term dynamics 

of the underlying fundamental forces. 

The results offer a novel interpretation of grain price dynamics over the past 40 years. In 

contrast to trends, such as those obtained with statistical methods, which closely follow the 

price series, the trend derived from the structural model exhibits larger deviations from the 

observed data. These deviations often culminate in sharp price spikes or collapses when 

the production and consumption trends intersect, typically corresponding to local minima in 

inventories. For instance, during the early 2000s, when demand from emerging markets was 

gaining pace, real grain prices fluctuated well below the trend. Instead, between 2007 and 

2013, corn and wheat prices surged above the trend, alongside other commodity prices, 

despite trend production growth exceeding consumption. 

More recently, trend consumption has been rising faster than production, leading to 

increasingly tight market conditions that make it more vulnerable to large weather or trade 

shocks, like Russia’s invasion of Ukraine. In addition, this war demonstrated how structural 

changes in quantities can have a disproportionate effect on price trends. Specifically, a 1% 

decrease in global harvested areas resulted in a 2-5% higher price trend, while a 2% decline 

– in a more than 10% increase in three years, relative to a no-change scenario. 

Nevertheless, according to projections from the OECD/FAO (2024), supply growth is 

expected to outpace demand over the next decade. As a result, real trend prices for corn 

and wheat should gradually decline. 

As it strikes a delicate balance between the transparency of time series models and the 

structural integrity of large sector-specific models, such a framework could become a 
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valuable addition to policymakers’ toolkits. First, its results can be easily incorporated into 

other forecasting models, including standard Quarterly Projection Models (QPMs), to reflect 

trends in world prices of selected commodities that are exogenous to these models. Second, 

in contrast to more sophisticated models operated by specialists (for instance, Aglink-

Cosimo by OECD/FAO (2022)), it requires a limited understanding of the market and a small 

number of assumptions, which can be easily interpreted and communicated. Finally, 

developing scenarios like those related to climate change becomes more straightforward. A 

solid understanding of its consequences for commodity prices and inflation might be 

particularly relevant for central banks that contemplate adding climate change 

considerations to their mandates. 

The rest of the paper is structured as follows. Section 2 reviews the existing literature on 

selected approaches to analyzing and forecasting commodity prices, emphasizing the 

underlying price trends. In Section 3, the paper describes the partial-equilibrium model 

developed for the joint estimation of prices and trends, highlighting its key components and 

assumptions. The data used in the study is presented in Section 4. Section 5 provides a 

detailed discussion of the results of applying the model to the corn and wheat markets and 

develops illustrative scenarios. Finally, Section 6 sets out conclusions.  

2. Literature Review 

This paper elaborates upon two major strands of literature on commodity prices. 

Forecasting Approaches 

Policymakers worldwide have long regarded futures prices as predictors of future commodity 

price movements (evidence spans at least from Greenspan (2004) to Lane (2024)). 

However, futures markets tend to underperform relative to the no-change forecast when the 

forecast horizon exceeds one year (Alquist et al., 2013). Earlier studies also show that the 

predictive content of futures prices has been declining since the early 2000s (Chinn and 

Coibion, 2014). Moreover, except for the upcoming one or two seasons, futures are typically 

available for only a few months and tend to be thinly traded. 

An alternative approach involves the use of standard univariate and multivariate 

econometric models (Kilian and Murphy, 2014; Baumeister and Hamilton, 2019; 

Bondarenko, 2023). While these models can provide reasonable price forecasts over short 

horizons, they rely on linear trends. Given the high volatility in commodity prices, such linear 

models are less informative beyond 6 to 12 months. 

Arroyo-Marioli et al. (2023) identifies consensus forecasts and macroeconometric models, 

such as the Oxford Economic Model, as the preferred tools for constructing longer-term 

projections. However, both approaches have certain limitations. Consensus forecasts may 

lack consistency with other key assumptions, such as on harvests or population growth. This 

is particularly relevant for Ukraine, given its significant role in the global corn and wheat 

markets. Although Ukraine’s production accounted for only about 3-4% of global totals, it 
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was the third or fourth largest exporter of corn and the fifth or sixth largest exporter of wheat 

in 2014–2023 (on average, about 14% and 9% of global trade, respectively). Additionally, 

consensus forecasts do not allow for scenario analysis. In turn, large-scale 

macroeconometric models are costly and complex to operate. This drawback also applies 

to other sophisticated sector-specific models, such as Aglink-Cosimo by OECD/FAO (2022). 

Commodity Storage Model 

Although primarily used for analytical purposes rather than forecasting, the commodity 

storage model is a prominent structural model that operates within a partial equilibrium 

framework. Initially proposed by Gustafson (1958), a theory of optimal storage and price 

determination was later brought into the empirical domain by Deaton and Laroque (1992, 

1995, 1996). In their simulations of the baseline model, the authors managed to replicate 

most of the key features of observed prices, except for the high autocorrelation. Building on 

their findings, Deaton and Laroque (1996) suggested that the high autocorrelation in prices 

should be attributed, at least partially, to the properties of the underlying supply and demand 

forces. However, the role of storage in explaining price dynamics then weakens 

substantially. 

Therefore, subsequent studies, following the standard approach in macroeconomic 

modeling, mostly resorted to statistical methods to remove the trend in prices and then 

analyzed the deviations from this trend with the competitive storage model. The existing 

body of literature primarily focuses on three distinct types of trends: linear, spline, and 

stochastic, each of which has its own shortcomings. The classic linear trend in the logarithm 

of price (Cafiero et al., 2011; Bobenrieth et al., 2013; Guerra et al., 2014) rotates from 

downward- to upward-sloping, depending on the period under consideration (Figure A.1(a) 

in Appendix). The use of restricted cubic splines (Roberts and Schlenker, 2013; Gouel and 

Legrand, 2017) involves prespecifying the knots, with the main issue being how to determine 

the appropriate number of knots. Depending on this parameter, price volatility in 2022–2024 

can be attributed to either trend swings or deviations from the trend, with future forecasts 

diverging significantly from a downward to an upward trajectory (Figure A.1(b) in Appendix). 

In addition, just as with the Hodrick-Prescott filter, a modeler working with splines faces the 

challenge of identifying turning points in the cycle, represented by the knots, in real-time 

analysis (Figure A.1(c) in Appendix). Osmundsen et al. (2021) questioned the economic 

logic of separating deterministic trends from the pricing model, as predictable income for 

stockholders has been generated in this setting. The authors then proposed a stochastic 

trend, but it accounted for the majority of price volatility, leaving the storage model to explain 

only a minor and often statistically insignificant fraction (Figure A.2 in Appendix). 

However, in the standard macroeconomic literature, both the practice of detrending prior to 

applying a model and the hybrid approach of Canova (2014) are often viewed as inferior to 

explicitly embedding trends into the model structure (Fernandez-Villaverde et al., 2016). 

Thus, Bobenrieth et al. (2021) introduced a latent deterministic trend in production, which 

together with consumer demand of HARA type alters the arbitrage condition of storage. With 



 

National Bank 
of Ukraine 

NBU Working Papers 
02/2025 

 

7 

such a model, the authors were able to generate high autocorrelation and a declining secular 

trend in prices, but they stopped short of analyzing developments after 2007 (despite having 

access to more than 10 years of data at the time of publication). The explanation for this 

may lie in the fact that their model implicitly induces a common trend across production, 

consumption, and prices, making it difficult to account for the structurally higher demand 

from EM countries and the US ethanol mandate changes – factors widely cited in the 

literature as somehow responsible for higher prices between 2007 and 2011 (Trostle, 2008; 

Trostle et al., 2011). 

Instead, Miao et al. (2011) incorporated both supply and demand trends, which made the 

price trend the outcome of the interaction between the two forces. This nonstationary trend-

based model likewise captured most price properties, including high autocorrelation, in 

simulations with artificially generated shocks to harvest. However, simulations involving 

actual shocks required further ad hoc adjustments to grain prices to account for the impact 

of oil prices, as the period under consideration included the energy crises of 1973 and 1979. 

Despite this shortcoming, the framework of Miao et al. (2011) offers a valuable tool for 

explaining price trends through economic fundamentals, as opposed to relying on an 

exogenous trend. 

The model developed by Miao et al. (2011) extends Deaton and Laroque (1992), which does 

not incorporate production decisions. Gouel (2013) shows how to add production decisions 

and outlines various methods to solve for the optimal price function, including the 

endogenous grid method. For the sake of experimental rigor, I apply both the original Miao 

et al. (2011) model and the extended version with production decisions, treating the latter 

as the baseline. 

3. Model 

In this section, I develop a competitive storage model in spirit of Miao et al. (2011) and 

extend it by incorporating the planting decisions of producers, as outlined in Gouel (2013). 

The model features three types of agents – consumers, producers, and inventory holders – 

who collectively shape market outcomes, along with a material balance equation. In each 

marketing year (MY) 𝑡, consumer demand for grain is determined by a constant price 

elasticity demand function with a trend component. Producers decide on acreage to 

maximize profits from the next harvest. Stockholders optimize storage quantities to 

maximize profits from selling them at the real price 𝑝𝑡+1 in the subsequent period. The 

material balance equation, ensuring supply matches demand, closes the model. 

Consumption 

The consumer sector has a stylized representation, with consumer demand 𝐷(𝑝𝑡) being a 

continuous function of price that contains a trend 𝜆𝑡
𝐷, a component with constant price 

elasticity, and an exogenous demand shock 𝜀𝑡
𝑑. 
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𝐶𝑡 = 𝐷(𝑝𝑡) = 𝜆𝑡
𝐷𝑝𝑡

−𝜌
𝜀𝑡

𝑑 (1) 

The trend 𝜆𝑡
𝐷, which reflects the long-term growth in grain demand, is primarily influenced 

by two factors: population growth and income growth. Assuming that the consumption 

patterns of new individuals align with those of the existing population, an increase in the 

number of individuals would consequently lead to a corresponding rise in the total quantity 

of grain consumed (Baffes and Nagle, 2022). In turn, as income increases, consumers would 

be able to afford larger quantities of both grains and meat, thereby enhancing the demand 

for grain as animal feed, particularly in developing countries (Janzen et al., 2014). Income 

growth played a lesser role in the case of wheat, where the total quantity consumed has 

mirrored population growth since 1980. Conversely, the demand for corn has been rising 

about as rapidly as GDP at market exchange rates, particularly after the global financial 

crisis (Figure A.3 in Appendix). However, both income and population trends appear only 

imperfect proxies for consumption trends. Thus, it is more appropriate to use actual 

consumption data within this framework, leaving alternatives for future research that 

incorporates more sophisticated demand functions. 

Production 

Every period 𝑡, producers make an acreage decision to maximize their expected profits from 

the harvest 𝐻𝑡+1 to be collected in the following MY2. The total harvest is given by the product 

of the area planted 𝐴𝑡 and the anticipated next-period yield 𝑌𝑡+1, as in 𝐻𝑡+1 = 𝐴𝑡𝐸(𝑌𝑡+1). 

Both area and yield can be further broken down into trend and gap (or shock) components, 

𝐴𝑡 = 𝐴‾𝑡𝜀𝑡
𝑎 and 𝑌𝑡 = 𝑌‾𝑡𝜀𝑡

𝑦
, respectively. 

The yield trend 𝑌‾𝑡 is primarily driven by technological innovations and better managerial 

practices by producers. In their expectations of next-MY profit, producers rely on the 

estimates of long-term trend yield 𝐸(𝑌‾𝑡+1), but they have no control over the final outcome 

because of the random component in yield, 𝜀𝑡
𝑦
. This gap between actual and expected 

harvests primarily results from short-term weather fluctuations and the harmful impact of 

pests. While they are fully exogenous to the model, substantial skill has been achieved in 

forecasting seasonal mean temperatures and precipitation, especially in the tropics and in 

regions with strong teleconnections with ENSO3. Moreover, there is some evidence of the 

impact of large-scale circulations, like ENSO, NAO, etc., on crop yield anomalies (Iizumi et 

al., 2014; Ceglar et al., 2017). Thus, although variability in 𝜀𝑡
𝑦
 can be to certain extent 

predictable well before harvest, I exclude this channel from the farmer’s problem for now, 

deeming it insignificant – although this assumption can be revisited later. 

𝜋𝑡+1
𝑎 =

𝐸𝑡(𝑝𝑡+1𝐻𝑡+1)

1 + 𝑟
− 𝑐(𝐴‾𝑡) =

𝐸𝑡(𝑝𝑡+1𝐴‾𝑡𝑌‾𝑡+1𝜀𝑡
𝑎𝜀𝑡+1

𝑦
)

1 + 𝑟
−

𝐴‾𝑡
𝛼+1

(1 + 𝑟)(𝛼 + 1)
 (2) 

                                                 
2 The marketing year varies slightly depending on the crop, but it usually starts with harvest and ends before 
the next year’s harvest. 
3 Nevertheless, the accuracy of a seasonal forecast is lower than that of a week-ahead forecast. 
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Production involves sowing costs that are modeled by an isoelastic cost function 𝑐(𝐴‾𝑡), 

where the cost varies with the acreage planted. However, the available data refers to the 

area harvested, not the one planted. Although the former is often a reasonable 

approximation for the latter, they differ somewhat in both their absolute levels and short-

term fluctuations (see Figure A.4 in Appendix for the United States, where both series can 

be obtained from the NASS survey). Therefore, 𝜀𝑡
𝑎 encompasses several important elements 

that are currently omitted from the cost function, such as expected prices of key inputs 

(oil/diesel, fertilizers), expected prices of alternative crops, and price risks4, as well as 

measurement errors. 𝜀𝑡
𝑎 is realized at the end of the year 𝑡, after the sowing decision is 

made. 

The cost function is also normalized by the factor (1 + 𝑟), where 𝑟 denotes a cross-period 

real interest rate, to ensure that the model’s deterministic steady state is normalized to 1 

when trends are set to 1. 

The solution to the profit maximization problem results in a constant elasticity supply 

function, with acreage planted 𝐴‾𝑡 being a strictly increasing function of the expected per-

acre revenue5. 

𝐴‾𝑡 = 𝐸𝑡(𝑝𝑡+1𝑌‾𝑡+1𝜀𝑡
𝑎𝜀𝑡+1

𝑦
)

1
𝛼 (3) 

Instead, if supply is completely inelastic, harvest is simply the product of trend area planted 

𝐴‾𝑡, trend yield 𝑌‾𝑡+1, and supply shocks 𝜀𝑡
𝑎 and 𝜀𝑡+1

𝑦
. 

Storage 

Risk-neutral inventory holders, operating in a competitive market, seek to maximize profits 

by purchasing grains at a lower price in period 𝑡 and selling them at a higher price in the 

subsequent MY. 

𝐸𝑡(𝜋𝑡+1
𝑠 ) =

1 − 𝛿

1 + 𝑟
𝐸𝑡(𝑝𝑡+1)𝐼𝑡 − 𝑝𝑡𝐼𝑡 − 𝜅𝐼𝑡 (4) 

The costs associated with storage include fixed physical per-unit costs 𝜅, depreciation 𝛿, 

and the opportunity cost (1 + 𝑟). Taking into account their expectations of price, 

stockholders decide on the amount to store, 𝐼𝑡, subject to the constraint that the quantity 𝐼𝑡 

cannot be negative. This gives rise to the intertemporal complementarity condition. 

𝐼𝑡 ≥ 0 ⊥  
1 − 𝛿

1 + 𝑟
𝐸𝑡(𝑝𝑡+1) ≤ 𝑝𝑡 + 𝜅 (5) 

                                                 
4 The gap between expected and realized prices. 
5 For corn, per-acre revenue was also augmented by the trend in harvested areas, as the model without this 
trend failed to replicate the steep increase in areas and produced unreasonable parameter values. 
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Thus, whenever the expected profit from carrying an additional unit of inventory is positive, 

stockholders will demand more inventory and bid up prices until the current and expected 

price, adjusted for carrying costs, converge. Conversely, an expected loss from holding 

inventories would imply zero holdings in 𝑡. Competition guarantees the absence of arbitrage 

profit from storage. 

 

Figure 1. Market Demand Function with and without Storage 

Parameter values are 𝛽 = 0.989, 𝛿 = 0.023, 𝜌 = 0.19, and 𝜅 = 0, as estimated in Miao et al. (2011). All trend values are 

set to 1. 

The market demand curve becomes kinked in the presence of inventory holders, as these 

agents create additional demand at lower price levels in order to take advantage of cost-

effective storage opportunities (Figure 1). For its part, storage plays a crucial role in 

mitigating price volatility in the event of a negative harvest shock. For instance, a decline in 

availability from 𝑄1 to 𝑄2 would normally cause the price to increase from 𝑝1 to 𝑝2, but in the 

presence of stored inventories, it rises only from 𝑝1
∗ to 𝑝2

∗. 

Material Balance 

Availability 𝑄𝑡 is the sum of the new harvest 𝐻𝑡 and quantities stored in the previous period 

𝐼𝑡−1, subject to a constant linear depreciation rate 𝛿. 𝑄𝑡 can either be consumed or stored 

for the next period. 

𝑄𝑡 = 𝐻𝑡 + (1 − 𝛿)𝐼𝑡−1 (6) 
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𝑄𝑡 = 𝐶𝑡 + 𝐼𝑡 (7) 

This concept corresponds to the balance sheet used by the U.S. Department of Agriculture 

(USDA) to discipline individual-country estimates of supply and demand (Vogel and Bange, 

1999). The balance sheet equation ensures that total grain supply (the sum of production, 

imports, and beginning stocks) equals total distribution (the sum of consumption, exports, 

and ending stocks) for each country and marketing year. Since exports and imports largely 

offset each other, up to a minor discrepancy, related to reporting differences and grain in 

transit, I currently omit trade in the analysis. 

Equilibrium 

A stationary rational expectations equilibrium (SREE) is a price function 𝑓 – rather than a 

single value – that is monotonically decreasing in the state variable, 𝑝𝑡 = 𝑓(𝑄𝑡) (Deaton and 

Laroque, 1992). When harvest is supplied randomly and inelastically, that is producers 

assume rather than choose area planted 𝐴‾𝑡, it is characterized by the first-order condition 

(5) and the transition equation (6). If producers optimize with respect to acreage, another 

condition (3) is added to the system. 

Solution 

The equilibrium price function 𝑓 lacks an analytical solution and must be solved numerically. 

For models with inelastic supply, several methods can be used, including the basic fixed-

point iteration method outlined in Deaton and Laroque (1992). However, when time-varying 

parameters are introduced, the grid of states 𝑄𝑡 changes every time period, requiring an 

increasingly large number of evaluation points and thus increasing computational burden. 

To handle this, I use the endogenous grid method (EGM) of Carroll (2006), as suggested by 

Miao et al. (2011), which places a grid on the decision variable 𝐼𝑡. For the model with 

endogenous production, I enhance the EGM by adding an extra step to solve for acreage 

𝐴𝑡 using the FOC (3) at each 𝐼𝑡 gridpoint every uesecond iteration, as outlined in Gouel 

(2013). 

Parameters 

I calibrate the models to match moments in the price data, namely the coefficient of variation 

and first two autocorrelations. The model with exogenous areas and i.i.d. harvest shocks 

has four structural parameters – real interest rate 𝑟 for time discount factor, demand elasticity 

𝜌, depreciation rate 𝛿, and storage cost 𝜅, – whereas the model with endogenous production 

includes also supply elasticity 𝛼. The parameter 𝑟 is calibrated as the average 1-year U.S. 

Treasury yield in 1987/88 MY to 2022/23 MY, adjusted for expected PCE inflation and 

aggregated on a marketing-year basis for the Northern Hemisphere6. As the values are 

                                                 
6 For wheat, July to June; for corn, October to September. 
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approximately the same, 𝑟 = 0.93%, in both the corn and wheat models. In line with the 

USDA data, where ending and beginning stocks are equal, depreciation 𝛿 is set to zero. 

The remaining parameters are estimated with the simulated method of moments. For each 

candidate set 𝜃 = [𝜌, 𝜅, 𝛼], I simulate a series of artificial prices for the years 1987 to 2024 

using the re-estimated function path along with the actual shocks to production and 

consumption. Next, the moments obtained from the simulations (𝑖𝑡ℎ order autocorrelations 

𝑎�̂�(𝑖) and coefficients of variation 𝑐�̂�) are compared with with those observed in the data 

(corresponding variables without hats) to choose a set of optimal parameters 𝜃 that 

minimizes the sum of their squared differences. 

min
𝜃

∑(𝑎𝑐(𝑖) − 𝑎�̂�(𝑖))2

2

𝑖=1

+ (𝑐𝑣 − 𝑐�̂�)2 (8) 

When considering exogenous supply, the objective function is initially evaluated on a sparse 

grid of 1,000 points, where 𝜌 takes values between 0 and 1, and 𝜅 varies between 0 and 

0.5. The grid is then refined over a narrower set of parameter values, with the maximum 

values of 𝜌 set at 0.6 and 0.4, and those of 𝜅 set at 0.1 and 0.07 for corn and wheat, 

respectively (see Figure A.6 in the Appendix). Owing to the substantial computational 

burden, the parameters 𝜌 and 𝛼 were restricted to the interval [0,0.5], 𝜅 to [0,0.25] in the 

endogenous production case. Moreover, several stages of grid refinement, focusing 

exclusively on areas near the minimum values of the objective function, were necessary to 

obtain optimal parameter values with the same level of precision. 

The estimated parameters 𝜌 and 𝛼 in Table 1 show that both demand and supply are 

relatively inelastic, consistent with previous studies. For instance, Roberts and Schlenker 

(2013) report demand elasticities for caloric intake (maize, wheat, rice, and soybeans) 

ranging from -0.05 to -0.08, and higher (in absolute values) supply elasticities of 0.08 to 

0.13, with the supply response mainly driven by land area expansion. Gouel and Legrand 

(2017) find demand elasticities of -0.03 for wheat and -0.06 for corn, whereas in Miao et al. 

(2011) estimates for wheat are higher at about -0.19, or within a range of -0.12 to -0.22. By 

contrast, models focusing solely on consumer demand often report higher elasticity values, 

with those collected by the USDA for products like wheat, maize, and cereals frequently 

clustering around -0.3, -0.5, and -0.7 to -0.8. While the fixed storage costs are generally 

comparable to those reported in Gouel and Legrand (2017), they are slightly higher, likely 

owing to the lower fixed interest rate of 0.93% in this study, as opposed to the 5% rate used 

in Gouel and Legrand (2017). 

The standard deviations of shocks 𝜎𝑎, 𝜎𝑦, and 𝜎𝑑 capture the standard deviations of area, 

yield, and consumption deviations from their respective trends. 
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Table 1. Parameter Values 

Parameter 𝒓 𝜹 𝜿 𝝆 𝜶 𝝈𝒂 𝝈𝒚 𝝈𝒅 

Corn 0.0093 0 
0.055 -0.10 0.015 

0.0184 0.0305 0.0139 
0.063 -0.11 – 

Wheat 0.0093 0 
0.032 -0.065 0.025 

0.0172 0.0206 0.0128 
0.038 -0.07 – 

Trends 

Following Miao et al. (2011), I treat trending variables 𝜆𝑡
𝐷, 𝑌‾𝑡, and (in the model with inelastic 

supply) 𝐴‾𝑡 as time-varying parameters. This formulation implies that, in contrast to the 

equilibrium framework of Deaton and Laroque (1992), for each period 𝑡, there exists an 

equilibrium price function 𝑓𝑡 rather than a single SREE (Figure 2). 

  
(a) Corn (b) Wheat 

Figure 2. Market and consumer demand functions for the baseline model in selected MYs 

While this approach offers the advantage of simplicity and lower computational cost by 

keeping the number of state variables at one, it introduces a trade-off in terms of economic 

consistency. Specifically, the resulting equilibrium assumes that future price functions will 

remain unchanged from the present. A more consistent approach – such as constructing an 

extended function path to account for rational expectations of changes in time-varying 

parameters, as proposed by Maliar et al. (2020) – is left for future research. 

4. Data 

This section first describes the price data used to estimate actual moments, which are then 

compared with simulated moments in the process of model calibration. It then discusses the 

quantity series used to calibrate the trends and the construction of alternative scenarios. 
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Prices 

In the case of traded commodities like wheat and corn, which are generally standardized 

but still feature some degree of differentiation7, specific reference or benchmark prices might 

depend on application. The National Bank of Ukraine relies in its analysis and forecasting 

processes on the data from the IMF’s Primary Commodity Price System, deeming it as the 

most informative on the evolution of export prices of Ukrainian grains. Thus, this paper also 

uses benchmarks from the IMF: Kansas City No. 1 Hard Red Winter for wheat and Louisiana 

No. 2 Yellow for corn. Prices are then adjusted by the U.S. Consumer Price Index (CPI) to 

account for changes in the general price level over time. 

To reconcile the monthly data from the IMF’s Primary Commodity Price System with the 

annual data from other sources, it is necessary to aggregate the price series. However, 

given the importance of current and expected prices in shaping the decisions of producers 

and competitive stakeholders, a basic aggregation method, like the calendar average, could 

prove to be inappropriate. Thus, I compute averages over the marketing year in the Northern 

Hemisphere8, while acknowledging that differences in sowing times between hemispheres 

could lead to divergent price expectations in different regions. This concern is particularly 

relevant for corn, where the combined exports of the three largest Southern Hemisphere 

exporters – Argentina, Brazil, and South Africa – accounted for over 40% of global exports 

in the most recent five-year period, with their combined production comprising around 15% 

of the world total. However, the development of a multi-region, multi-period model is beyond 

the scope of this study and is to be addressed in future research. 

Consistent with previous studies, the price data exhibits a high degree of autocorrelation at 

both first and second lags, pointing to a persistence in price movements over time. 

However, the price data used in this paper, which spans from 1987 onward due to the 

limited availability of disaggregated production data, shows lower values across all of the 

presented statistical metrics compared to the longer time series analyzed by Deaton and 

Laroque (1992) and Miao et al. (2011) (Table 2). 

Table 2. Descriptive Statistics 

Statistic 
Corn Wheat 

DL (1992) This paper DL (1992) MWF (2011) This paper 

Autocorrelation(1) 0.76 0.63 0.86 0.83 0.57 

Autocorrelation(2) 0.53 0.29 0.68 0.63 0.20 

Coefficient of variation 0.38 0.27 0.38 0.49 0.27 

Skewness 1.18 0.90 0.87 1.57 0.36 

Excess kurtosis 2.48 0.13 0.61 2.60 -0.92 

  

                                                 
7 For instance, the USDA and traders distinguish several U.S. grain grades that reflect the general quality and 
condition of a representative sample, marked by "No. 1", "No. 2", etc. 
8 For wheat, July to June; for corn, October to September. 
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It should also be noted that, at higher frequencies, such as quarterly, relatively large price 

fluctuations occur more often, consistent with the model of speculative behavior, which leads 

to increased skewness and kurtosis. Quarterly prices also show higher autocorrelations, 

where high and low prices tend to be followed by high and low prices, respectively. 

Therefore, future studies could benefit from incorporating quarterly rather than annual data, 

though this would require addressing harvest discontinuities. 

Supply and Demand 

The USDA is a widely recognized and reliable source of data on agricultural markets. It 

provides estimates for key components of the supply and demand equation – including 

beginning stocks, production, area, yield, imports, exports, consumption, and ending stocks 

– for most countries, on a MY basis. As per the countries listed below, the balanced panel 

of series starts in the 1987/88 MY. 

In its influential WASDE report, the USDA classifies Argentina, Brazil, Russia, South Africa, 

Ukraine, and the United States as major exporters of corn, and Egypt, European Union (with 

the UK), Japan, Mexico, Southeast Asia9, and South Korea as major importers of corn. 

Japan, Malaysia, and South Korea are excluded from the sample, as their production and 

areas harvested are comparatively small. To maintain a balanced representation of the 

global market, Canada, China, India, Angola, Nigeria, Tanzania, and Uganda are 

incorporated into the analysis. The selected countries and country groups represent, on 

average, about 82% of corn areas and 92% of global production. 

Major wheat exporters, as defined by the USDA, consist of Argentina, Australia, Canada, 

the European Union (with the UK), Russia, Ukraine, and the United States. In contrast, the 

list of major wheat importers is broader, covering regions such as North Africa10, the Middle 

East11, and Southeast Asia12, along with countries including Bangladesh, Brazil, China, 

South Korea, Japan, Nigeria, Mexico, and Turkey. To ensure a relatively stable share for 

the rest of the world, I include also India, Kazakhstan, Pakistan, Ethiopia, and Uzbekistan. 

This extensive set of countries covers nearly 95% of the total wheat area harvested and 

almost 96% of global wheat production. 

To construct the forecast, I adjust the quantity and area data from the OECD-FAO 

Agricultural Outlook 2024–2033 (OECD/FAO, 2024) to incorporate the latest available 

observations. In specific cases – such as Ukraine – only the year-on-year changes from the 

OECD projections are used to construct the corresponding levels. Global aggregates are 

then corrected to account for any differences between the adjusted national series and the 

                                                 
9 Indonesia, Malaysia, Philippines, Thailand, and Vietnam. 
10 Algeria, Egypt, Libya, Morocco, and Tunisia. 
11 Lebanon, Iraq, Iran, Israel, Jordan, Kuwait, Saudi Arabia, Yemen, United Arab Emirates, and Oman. The 
sample includes only Iraq, Iran, and Saudi Arabia, as other countries produce negligible amounts. 
12 Indonesia, Malaysia, Philippines, Thailand, and Vietnam. No countries produce any relevant output, and 
thus, they are not explicitly represented in the sample. 
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original OECD data. For countries not explicitly covered in the OECD-FAO dataset, recent 

trends are extrapolated forward. 

Each country’s acreage and yield series are filtered using the HP filter to separate long-term 

trends from short-term fluctuations. The lambda parameter is set to 100, consistent with 

standard practice for annual data, and the use of OECD-FAO projections helps mitigate the 

end-point problem. The resulting country-specific trends are then aggregated to construct a 

global trend. The shocks, denoted as 𝜀𝑡
𝑎 and 𝜀𝑡

𝑦
, are calculated as the deviations between 

the global areas harvested and yields, respectively, and their corresponding trends, which 

are derived from the country-level filtered data. 

 

Figure 3. Projected World Wheat and Corn Area under Different Ukraine Export Scenarios 

This approach to constructing trends facilitates the analysis of the impact of country-specific 

events on global yield, harvested areas, and, consequently, price trends. For example, 

Russia’s invasion of Ukraine and the subsequent closure of ports severely disrupted 

Ukraine’s ability to export. Alternative transportation routes, such as railways, roadways, 

and Danube ports at maximum capacity, were only able to sustain just over half of Ukraine’s 

pre-invasion export volumes, and only around 30% at average capacity. Were it not for the 

successful operations of Ukraine’s Armed Forces, which allowed ports to resume 

operations, this would have further reduced the area planted in Ukraine. As shown in Figure 

A.5 in the Appendix, there has been no structural break in yields; rather, the impact was 

absorbed by a reduction in acreage. Instead, had it not been for the invasion, Ukraine’s 

planted areas would have been approximately 25% higher. Ukraine’s areas represent only 

up to 3.5% of global harvested areas, but such a significant change would still result in a 

0.7-2.1% drop in global trend areas, relative to the "normal" scenario without the invasion 

(see Figure 3). Ukraine’s status as a major exporter would amplify the impact on prices. 



 

National Bank 
of Ukraine 

NBU Working Papers 
02/2025 

 

17 

Since world consumption of corn and wheat generally exhibits relatively low volatility from 

year to year, each is treated as a separate global aggregate, simplifying the analysis by 

omitting a country-by-country breakdown. The shock, 𝜀𝑡
𝑐, represents the differences 

between actual consumption series and its smoothed HP-filtered trend, capturing 

unexpected fluctuations in global consumption patterns for each crop. 

5. Results 

This section presents the results of the modeling, beginning with a review of historical trends 

in agricultural production and prices. It then discusses the impact of Russia's invasion of 

Ukraine on long-term price trends, stemming from the reduction in Ukraine’s areas planted 

due to disruptions in export capacity. Finally, the section examines potential future dynamics 

in price trends, based on OECD-FAO projections of world grain supply and demand. 

Historical trends 

The analysis reveals patterns in grain prices that differ slightly from those found with 

statistical methods. By construction, the interplay between production and consumption 

trends directly shapes price trends, with periods of stronger production than consumption 

growth associated with lower prices, and vice versa (Figure 4), in line with economic theory. 

Before the mid-1990s, supply outpaced demand, leading to a prolonged decline in price 

trend that culminated in a sharp price drop by the 2000s. In the early 2000s, however, 

demand – driven largely by emerging markets amidst globalization and rising incomes – 

surpassed production growth, before production again took the lead. As a result, price trends 

peaked several years before the price spikes of 2007–2013, when the prices of major 

commodities, including corn and wheat, surged. When wheat production is endogenous, this 

pattern largely disappears, suggesting that fluctuations in planted areas are the primary 

cause of the volatility13. Since 2015, the slowdown in production growth has outpaced that 

of consumption, contributing to greater upward pressure on prices. 

While the models are calibrated to closely match actual and simulated moments (first two 

autocorrelations and coefficient of variation), the Exo model14 achieves a better fit. Overall, 

the three shocks from USDA quantity data are insufficient to fully capture price dynamics. 

Of the factors identified in Trostle (2008) and Trostle et al. (2011), the model fully or partially 

incorporates only about half, through either trends or shocks. It notably omits international 

trade and policies of key exporting and importing countries, which can amplify the effects of 

regional shocks, such as weather events, on prices. These results align with previous 

studies, suggesting that unforeseen macroeconomic shocks fail to translate into commodity 

price fluctuations, with own price movements responsible for the majority of variance in both 

                                                 
13 As Figure A.7 in Appendix shows, the model’s trend areas, generated without exogenous inputs, deviate 
somewhat from the actual data. 
14 Hereafter, the label "Exo" denotes variables produced by the model with an exogenous trend in the area 
harvested, while "Endo" refers to those generated by the model that incorporate producers’ endogenous 
decisions regarding acreage. 
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nominal and real prices (OECD, 1993). Moreover, the models also overlook the relationship 

between commodities, particularly oil, the price of which remained consistently high between 

2007 and 2015. Apart from the financialization of commodities (Janzen et al., 2014), the 

most apparent link between grain and oil prices lies in the production costs. Since oil is an 

essential input to both the fuel needed for planting and harvesting, and the fertilizers and 

pesticides required for crop growth, higher oil prices tend to drive up agricultural costs across 

the board and, as a result, grain prices. 

 
(a) Corn 

 
(b) Wheat 

Figure 4. Actual and Simulated Grain Stocks15 and Prices 

Note: prices simulated with shocks 𝜀𝑡
𝑎, 𝜀𝑡

𝑦
, and 𝜀𝑡

𝑐 are shown with dotted lines. 

  

                                                 
15 World stocks, excluding China (assumed to be mostly owned by the government (Deuss and Adenauer, 
2020) and estimated U.S. public stocks until 1988 (according to Zulauf et al. (2021), the 1985 Farm Bill, coupled 
with the severe 1988 drought, played a key role in reducing public stocks, and the 1996 Farm Bill subsequently 
eliminated most public stock programs). 
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Table 3. Summary Statistics of Actual and Simulated Prices 

Statistic 
Corn Wheat 

Actual Exo mod Endo mod Actual Exo mod Endo mod 

Autocorrelation(1) 0.63 0.61 0.31 0.57 0.61 0.50 

Autocorrelation(2) 0.29 0.29 0.12 0.20 0.17 0.39 

Coefficient of variation 0.27 0.23 0.23 0.27 0.24 0.24 

Skewness 0.90 1.73 1.03 0.36 1.62 0.88 

Excess kurtosis 0.13 4.27 0.85 -0.92 2.31 0.04 

The models simulate not only prices but also stocks, chosen by the competitive inventory 

holder. While stock-outs are unlikely in practice due to the need to maintain operational 

inventories, multi-period stock lows are consistently associated with price spikes. The "Exo" 

model performs particularly well in tracking the dynamics of stock deviations from these 

minimums. Notably, these minimums frequently coincide with the intersections of trends in 

production and consumption. 

Impact of the War 

Russia’s invasion of Ukraine, which in the model is reflected solely by a reduction in 

Ukraine’s harvested areas (as international trade is currently omitted), has influenced trend 

prices, particularly in the Exo model. Relative to a counterfactual scenario without the 

invasion, the corn price trend was just 0.6% higher in the first year, but the gap widened to 

around 1.4% by the current year. For wheat, the effect was more pronounced, with price 

trends decoupling by 3% to almost 5%. However, these changes remain relatively moderate 

compared to a scenario of continuous disruption to Ukraine’s sea exports, which would have 

caused trend prices to rise by 14% to 22% by the third year of the war (Figure 5). 

  
(a) Corn (b) Wheat 

Figure 5. Alternative Price Trends in Exo Model after the Invasion 
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Price Trend Projections 

Beyond historical patterns, the models can further be used to generate alternative price 

trend forecasts based on expected developments in demand and supply fundamentals. To 

this end, the present paper relies on the OECD-FAO ten-year outlook for production and 

consumption, adjusted as described in Section 4. According to the OECD/FAO (2024), 

supply is expected to grow faster than demand over the coming decade, exerting downward 

pressure on real grain prices (Figure 6). However, nominal prices are still projected to 

increase slightly from current levels due to inflationary effects, assuming a 2.5% annual 

inflation rate in the United States (based on the CPI16). 

 

(a) Corn 

 
(b) Wheat 

Figure 6. Growth in Demand and Supply with Corresponding Price Trends: Outlook for the Next Decade 

However, worsening weather conditions (including higher temperatures and increased 

evapotranspiration) may act as a headwind, offsetting technological progress (like drought-

resistant seeds and new irrigation systems), potentially causing long-term yields to flatten 

or decline. Consequently, this factor could limit the fall in real prices by the end of the 

projection period, while also leading to tight market conditions that heighten the risk of a 

price spike. 

                                                 
16 The Federal Reserve targets a 2% inflation rate for Personal Consumption Expenditures (PCE), which tends 
to be 50 basis points lower than CPI inflation. 

https://www.clevelandfed.org/publications/economic-trends/2014/et-20140417-pce-and-cpi-inflation-difference
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6. Conclusions 

This paper presents a thorough attempt to reconsider the conventional approaches used to 

analyze trends in corn and wheat prices, highlighting their limitations, and proposes instead 

an alternative framework. Rather than relying on econometric techniques such as splines or 

HP filters, it employs a structural model that builds upon the commodity storage model, 

incorporating trending supply and demand shifters. These trends are calibrated using 

comprehensive USDA data on quantities produced and consumed, aiming to ensure a 

robust connection of prices to real-world market conditions. The structural parameters are 

then estimated with the method of simulated moments. 

The outlined approach provides a more comprehensive understanding of how price trends 

are influenced by evolving market fundamentals. In this setup, periods where production 

grows more rapidly than consumption are accompanied by lower prices, and conversely, 

when consumption growth outpaces production, prices tend to rise. Consequently, real grain 

prices fluctuated well below the trend in the early 2000s before surging in 2007-2013, in 

tandem with rising oil prices, amid a backdrop of declining price trends. Structural breaks in 

consumption or production, like the reduction in Ukraine’s harvested areas, can also have a 

disproportionately large impact on trends. Specifically, this decline led to a 0.7-0.8% drop in 

global trend areas but to a more than two-times higher increase in global trend prices relative 

to a counterfactual scenario without the invasion. 

In addition, this paper confirms that incorporating trends in fundamental variables can 

address the long-standing issue of high correlation in commodity prices, which is hard to 

replicate using storage alone. 

Nevertheless, to accurately capture price dynamics, the models would require further 

extensions, particularly the inclusion of international trade. This addition would allow the 

models to account for trade shocks, such as export bans or involuntary export cuts under 

the pressure of exogenous factors, say the blockade of Ukraine’s Black Sea ports at the 

outset of Russia’s full-scale invasion. Additionally, the models could also benefit from 

integrating production and consumption trends as autocorrelated variables, rather than 

treating them as static parameters. Lastly, incorporating semi-annual data to account for the 

growing significance of the Southern Hemisphere, especially for corn, or quarterly data to 

capture intra-season price spikes and align with the standard reporting frequency of 

policymakers, would enhance the model’s applicability.  
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APPENDIX A. FIGURES 

 

Figure A.1. Logarithm of Real Prices and Alternative Trends 

Notes: (a) linear (top), (b) restricted cubic spline (middle), (c) Hodrick-Prescott filter (bottom). 
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Figure A.2. Commodity Prices and Filtered Price Components from Osmundsen et al. (2021) 

Notes: (a) time series plot of the log price in blue and the estimated filtered mean of the stochastic trend component in red 

(top), (b) time series plot of the estimated filtered mean of the storage model component in red, gray shaded areas indicate 

the 95% credible intervals under the filtering. 

 

Figure A.3. Indexes of World Grain Consumption Proxies (1987 = 1.0) 

Source: USDA, IMF, U.S. Census Bureau International Data Base. 
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Figure A.4. Harvested and Planted Corn and Wheat Areas in the United States. 

Source: USDA National Agricultural Statistics Service. 

 

Figure A.5. Corn and Wheat Areas Harvested and Yields in Ukraine 
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(a) Parameters for the corn model with inelastic supply 

 

(b) Parameters for the wheat model with inelastic supply 

 

(c) Parameters for the corn model with endogenous areas 

 

(d) Parameters for the wheat model with endogenous areas 

Figure A.6. Squared Difference Between Simulated and Actual Moments  
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Figure A.7. World Wheat Areas Harvested 

 


	Prices

