Sovereign Default and Banking

Igor Livshits

Western, BEROC

Koen Schoors

Ghent

Government Default and Banking - p. 1/

The Story

- Prudential regulation is necessary to prevent excessive risk-taking by banks
- Prudential regulation relies on "safe assets"
- Government bonds are considered safe by regulator
- When government debt is no longer safe,
- Prudential regulation fails banks gamble
- Government default brings about banking crisis
- Examples?
 - Russia in 1998
 - Argentina in 2001

The Story

- Prudential regulation is necessary to prevent excessive risk-taking by banks
- Prudential regulation relies on "safe assets"
- Government bonds are considered safe by regulator
- When government debt is no longer safe,
- Prudential regulation fails banks gamble
- Government default brings about banking crisis
- Examples?
 - Russia in 1998
 - Argentina in 2001
 - Europe in 2011?

The Plan

- Very simple model to illustrate the story
- What do we learn?
 - The government may *choose* to not adjust the regulation
 Allowing "gambling" lowers the cost of borrowing
 - Funds are diverted away from productive projects
- Make the model a little richer (realistic)
 - Show that key insights are reinforced
- Empirical support
 - Russia: Anecdotes and banks' balance sheets
 - Europe: Repatriation of debt
- Policy Implications: Lessons for Europe?
 - Should LTRO allow GIPSI banks to buy GIPSI bonds? Government Default and Banking – p. 4/

Simple Model: Roadmap

- Simplest model with role for banking regulation:
- Banks can invest in
 - Safe projects
 - Risky projects = bad gambles
 - Lower expected return, but chance of a high payoff
 - Government bonds
- Laissez-faire: Banks invest in risky projects
- Prudential regulation prevents this excessive risk-taking
- If government bonds are risky,
- but regulation considers them safe,
- regulation fails

Simple Model. Banking

- Competitive risk-neutral bankers
- Investment opportunities
 - Safe projects:
 - Deterministic return r
 - Risky projects:
 - Return R with probability p, 0 otherwise
 - Can be perfectly correlated
 - $\mathbf{P} R < r < R$
 - Government bonds:
 - Pay $(1 + i_q)$
 - Interest rate is endogenous

Simple Model. Banking

- Bankers are essential
 - Non-bankers cannot identify good projects
- Banking is subject to limited liability
- and moral hazard
 - Depositors don't know what banks invest in
- Keeping it simple, take as exogenous:
- Supply of deposits, X
 - from OLG households with Cobb-Douglas preferences
- Government debt, D
- Bankers' total wealth, B

Role for Regulation

- First Best:
 - Invest in safe projects only
 - Implied interest rates: $r = 1 + i = 1 + i_g$
- Laissez-faire:
 - Banks would gamble (due to limited liability): p(R - (1 + i)) > r - (1 + i) = 0

- Meeded: Prudential regulation:
 - Force the banks to hold enough
 - own wealth (capital)
 - safe securities
 - to make bad gambles unattractive

Simple Prudential Regulation

- Capital requirement
 - Banks must own fraction b of investments
- Reserve requirement
 - Banks must hold fraction q in bonds
 - bonds are in abundant supply: D > q(X + B)
 - so that the interest rate $(1 + i_g)$ is endogenous
- Prudential regulation is effective if

$$b \ r(1-p) \ge (1-q) \ p(R-r)$$

The regulation achieves the First Best

Simple Prudential Regulation

- Capital requirement
 - Banks must own fraction b of investments
- Reserve requirement
 - Banks must hold fraction q in bonds
 - bonds are in abundant supply: D > q(X + B)
 - so that the interest rate $(1 + i_g)$ is endogenous
- Prudential regulation is effective if

$$b \ r(1-p) \ge (1-q) \ p(R-r)$$

- The regulation achieves the First Best
 - As long as the bonds are indeed risk-free

Possibility of Government Default

The Environment:

- Government debt is now risky
- The default probability is exogenous
 - abstracts from endogenous cost of default, etc.
 - to highlight one key mechanism
- The default probability is (1-p)
 - there are risky projects perfectly correlated with debt

What happens if the regulation is not adjusted?

Possibility of Government Default

The Equilibrium:

- All banks gamble
 - by investing in bonds and perfectly correlated risky projects
- Some may quit banking and invest own capital
- **•** Bonds are just another gamble: $1 + i_g = R$
- Deposit interest rate (promised) pinned down by:

$$p(R - (1 - b)(1 + i)) = br$$

• Investment in safe projects is unprofitable: 1 + i > r

Key Insights

- Equilibrium interest rate on government bonds:
 - If regulation were adjusted: $1 + i_g = \frac{r}{p}$
 - safe banks have to be compensated for default risk
 - If regulation not adjusted: $1 + i_g = R < \frac{r}{p}$
 - gambling banks bid the bond prices up
- Not adjusting the regulation lowers the cost of borrowing
 - may allow government to postpone/avoid default

Investment is diverted away from productive projects
into "gambles" correlated with government bonds

Robustness

Key findings carry on to richer models:

- Endogenous return to risk-free projects
 - Some banks specialize in safe projects
- More sophisticated prudential regulation

In all these models

- Some banks gamble
 - diverting investment away from productive projects
- Default leads to banking crisis
- Govt cost of borrowing is lower when regulation is *not* adjusted

Augmented Model

- Make return on safe projects endogenous:
 - There's a fixed measure of safe projects
 - which belong to entrepreneurs, who get the profits
 - with decreasing returns scale
 - r is decreasing in the amount invested in safe projects
- Denote by r^{FB} the (bankers') rate of return when all available funds (B + X - D) are invested in safe projects
- Assume $r^{FB} > pR$ and $r^{FB} < R$
- If govt bonds are safe, regulation works (as before) if

$$b r^{FB}(1-p) \ge (1-q) p(R-r^{FB})$$

But what if the debt is risky?

Augmented Model with Risk of Default

- If govt bonds are risky (but presumed safe),
 - Some banks gamble
 - investing in bonds and risky projects
 - Rate of return on safe project goes up
 - Some banks invest in safe projects (survive the crisis)
 - Depositors cannot identify safe banks
- While allowing gambling increases the interest rates,
- The government still faces low borrowing cost: $1 + i_g = R$

Sophisticated Prudential Regulation

$$b(q) = (1-q)\frac{p(R-r^{FB})}{r^{FB}(1-p)}$$

- If govt bonds are safe, regulation works (as before)
- If govt bonds are risky (but presumed safe),
 - Safe banks hold no government bonds
 - Gambling banks hold bonds and correlated gambles
 - Equilibrium interest rates:

$$R > 1 + i_g = r = 1 + i > pR$$

- Holding govt debt allows capital-poor banks to expand
 - This makes bonds even more attractive and expensive

Anecdotal Evidence from Russia

Ippolito (2002)

- Government default did not kill Russian banks
- Gambling killed Russian banks

Estimates of forward liabilities to non-residents:

Bank	\$mln	% of	Bank	\$mln	% of
		Capital			Capital
Inkombank	1884	719%	Sberbank	379	23%
Onexim	1442	203%	NRB	224	50%
Vneshtorgbank	1062	136%	Menatep	91	37%
MDM	634	713%	MFK	80	46%
Avtobank	602	299%	Mezhkombank	67	67%

Source: Troika Dialog on the basis of banks' RAS as of 01.07.98

Systematic Evidence: Russia 1998

Correlations between GKO holdings and Currency Risk

Period	All Banks	State	Private	Foreign	Domestic
1998.Q1	0.2173	0.0966	0.2228	0.7431	0.1421
1998.Q2	0.1798	0.1675	0.1820	0.5173	0.1206
1998.Q3	0.0206	-0.1576	0.0280	0.2910	0.0116
1998.Q4	-0.0004	-0.2649	0.0076	0.3717	-0.0177

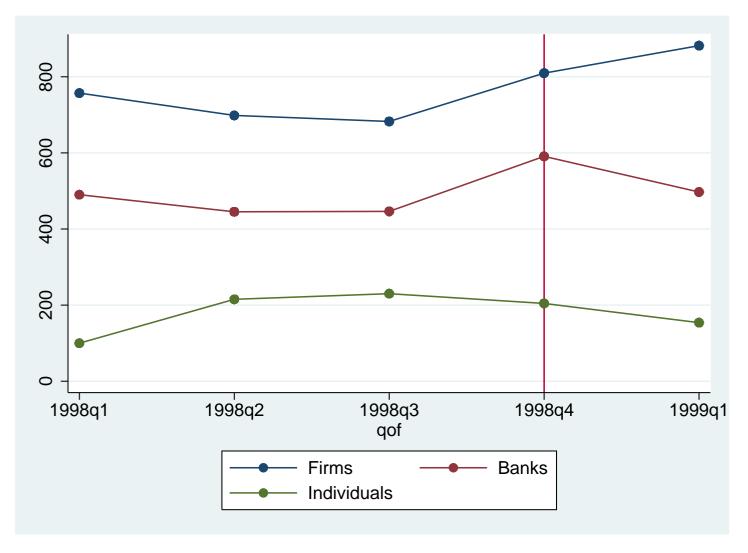
Systematic Evidence: Regressions

OLS with Currency Risk as Dependent Variable; by Quarter

Variable	1998.Q1	1998.Q2	1998.Q3	1998.Q4
GKO/Assets	0.0955	0.0724	0.0194	-0.0111
	(0.0171)***	(0.0158)***	(0.0273)	(0.0312)
Foreign Dummy	-0.0783	0.0230	-0.0796	-0.0956
	(0.0318)**	(0.0315)	(0.0402)**	(0.0411)**
State Dummy	-0.0311	-0.0163	-0.0218	-0.0278
	(0.0209)	(0.0201)	(0.0296)	(0.0304)
(GKO/Assets)*State	-0.0361	0.0074	-0.1104	-0.1159
	(0.1044)	(0.0899)	(0.1289)	(0.1391)
(GKO/Assets)*Foreign	0.8084	0.3751	0.3522	0.5859
	(0.0826)***	(0.0794)***	(0.1556)**	(0.1683)***
Constant	-0.0030	-0.0021	-0.0038	-0.0094
	(0.0024)	(0.0023)	(0.0036)	(0.0040)**
R ²	0.1357	0.0806	0.0062	0.0108
Adjusted R ²	0.1330	0.0775	0.0028	0.0073

Evidence from Europe

- Repatriation of sovereign debt in Southern Europe
 - Greater share of risky bonds held in home countries
 - A lot of it held by domestic banks
 - Brutti Sauré (2013)
- Banks of troubled countries borrowed from ECB and purchased government bonds
 - Acharya Steffen (2014) "Greatest Carry Trade Ever?"


Lesson for Europe?

- LTRO scheme delegated screening of collateral
 - to member countries' central banks
- This may lead to (constitute) failure of prudential regulation
 - This failure may not just be costly *ex-post*
 - It distorts banks' incentives
 - Generating *ex-ante* dead-weight loss
- If ECB (eurozone) are willing to subsidize GIPSI borrowing
 - They should do so directly
 - Without introducing distortions into the banking system
 - May as well buy the bonds

Summary

- Prudential regulation that considers *risky* govt bonds safe
 - Generates excessive risk taking by banks
 - Diverts investment from productive projects
 - Default leads to banking crisis
- Governments may *choose* not to adjust the regulation
 - Failure to adjust lowers the cost of borrowing
 - May prolong the life of a government
 - Effectively, the government gambles with the banks
 - Alternative reason: Endogenous commitment
- Evidence (both micro and anecdotal) lends support
- Implication for the design of LTRO in Europe

Bank Deposits by Source

excludes Sberbank

Bankers' Problem: No Regulation

Safe bank:

$$V^{S}(w) = \max_{D,q} \left[(D+w) \left(q(1+i_g) + (1-q)r \right) - D(1+i) \right]$$

• Gambling bank: $V^R = E \max{\text{Return} - \text{Payment}, 0}$

$$V^{R}(w) = \max_{D,q} \mathbf{p} \left[(D+w) \left(q(1+i_{g}) + (1-q)R \right) - D(1+i) \right]$$

• Not a bank:
$$V^N(w) = wr$$

•
$$V(w) = \max \{ V^{S}(w), V^{R}(w), V^{N}(w) \}$$

Bankers' Problem: No Risk of Default

• Safe bank:

$$V^{S}(w) = \max \quad [(D+w)(q(1+i_g) + (1-q)r) - D(1+i)]$$

s.t. $q \ge \overline{q}$ $\frac{w}{D+w} \ge b$

• Gambling bank:

$$V^{R}(w) = \max \quad p\left[(D+w)\left(q(1+i_{g})+(1-q)R\right)-D(1+i)\right]$$

s.t. $q \ge \overline{q}$ $\frac{w}{D+w} \ge b$

• Not a bank:
$$V^N(w) = wr$$

•
$$V(w) = \max \{ V^{S}(w), V^{R}(w), V^{N}(w) \}$$

Bankers' Problem: Risk of Default

• Safe bank:

$$V^{S}(w) = \max \quad (D+w)\left(\mathbf{p}q(1+i_{g}) + (1-q)r\right) - D(1+i)$$

s.t. $q \ge \overline{q}$ $\frac{w}{D+w} \ge b$

• Gambling bank:

$$V^{R}(w) = \max \quad p\left[(D+w)\left(q(1+i_{g})+(1-q)R\right)-D(1+i)\right]$$

s.t. $q \ge \overline{q}$ $\frac{w}{D+w} \ge b$

• Not a bank:
$$V^N(w) = wr$$

•
$$V(w) = \max \{ V^{S}(w), V^{R}(w), V^{N}(w) \}$$

Bankers' Problem: CAR Regulation

• Safe bank:

$$V^{S}(w) = \max \quad (D+w) \left(pq(1+i_g) + (1-q)r \right) - D(1+i)$$

s.t.
$$\frac{w}{D+w} \ge b(q)$$

Gambling bank:

$$V^{R}(w) = \max \quad p\left[(D+w)\left(q(1+i_{g})+(1-q)R\right)-D(1+i)\right]$$

s.t.
$$\frac{w}{D+w} \ge b(q)$$

• Not a bank:
$$V^N(w) = wr$$

• $V(w) = \max \{ V^{S}(w), V^{R}(w), V^{N}(w) \}$

Why Not change regulation?

- Lower cost of borrowing for the government
 - may postpone/avoid default
- At time T, the govt can repay
 - up to Q_1 with certainty
 - up to Q_2 with probability p
 - where $pQ_2 > Q_1$

• If government owes $D \in (D_2, D_3]$ it may let banks gamble

Augmented Model with Risk of Default

- With possibility of default and
- Unadjusted naive prudential regulation
 - Safe banks survive the crisis (lose some of their capital)
 - Risky banks fail following default
 - Only risky banks hold govt debt in excess of q

•
$$1 + i_g = R$$

- Risky banks: p(R (1 + i)(1 b)) = br
- Safe banks: pqR + (1 q)r (1 + i)(1 b) = br
- Equilibrium interest rates are not revealing

$$\frac{r^{FB}}{p} > R = 1 + i_g > r > 1 + i > r^{FB} > pR$$