State-Dependent Pricing and the Paradox of Flexibility

Luca Dedola and Anton Nakov

European Central Bank & CEPR

May 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Disclaimer

Any views and opinions expressed here are our own and do not necessarily coincide with those of the ECB.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Is increased price flexibility stabilizing?

- Leading models of state-dependent pricing account well for some features of price setting at the micro level (Golosov and Lucas, 2007)
- ► However, in these models money is almost neutral, unlike in time-dependent pricing models (Calvo, 1983)
- Notion that increased price flexibility is stabilizing: it mutes the real effects of demand shocks

Is increased price flexibility stabilizing?

- We show here that this notion is not quite true: it all depends on systematic monetary policy
- If monetary policy leans sufficiently against inflation then the notion is correct
- However, if monetary policy allows for a drift in the price level, then increased price flexibility may lead to higher output volatility in response to demand shocks

Why is this interesting or relevant?

Policy nominal interest rates in six advanced economies

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Growing literature

Recent literature shows that constant interest rates may lead to the amplification of shocks:

Woodford (2011), Christiano, Eichenbaum, Rebelo (2011), Del Negro et al. (2013), Erceg and Linde (2014), Kiley (2014)

- A drop in the natural real rate has larger deflationary effects than if policy was leaning against the disinflation
- ▶ The government spending multiplier is (much) larger than 1

Forward guidance is very powerful

Constant interest rates and shock amplification

Mechanism:

- Suppose *i_t* = *i* for *t* = 0...*T* and afterwards monetary policy follows some rule
- Then $\hat{c}_0 = \sigma \sum_{t=1}^T E_0 \pi_t + \hat{c}_T \approx \sigma (E_0 p_T p_0)$
- ▶ Let shock ĝ₀ > 0
- All depends on the policy rule in place:
- If on exit $i_{t>T} = i + \phi \pi_t$, then $p_T > p_0$ and crowding in

• If $M_t = M$, then $p_T < p_0$ and crowding out

The paradox of flexibility

 "Paradox of flexibility": increasing price flexibility leads to a larger drift of the price level and larger amplification

- It leads to a deeper recession and deflation when hit by a deflationary shock (Eggertsson and Krugman)
- Also leads to a larger government spending multiplier (Christiano et. al., Erceg and Linde)
- The existing papers all assume exogenous flexibility (Calvo pricing)

This paper

- Looks at the effects of a shock to government spending
- Across three pricing models: Calvo, fixed menu cost, and encompassing model
- Encompassing model is "smoothly state-dependent" : adjustment probability is a smoothly increasing function
- We compare monetary policy rules that lean against inflation with ones that keep the nominal interest rate constant

Main findings

- With monetary policy that doesn't lean against inflation SDP produces even larger amplification than Calvo
- More price flexibility is destabilizing
- The paradox of flexibility is not just an artifact of Calvo pricing

Outline of the talk

- 1. Introduction \checkmark
- 2. Model
- 3. Results
- 4. Conclusions

Main model ingredients

- Model deviates in two ways from textbook New Keynesian model:
 - Idiosyncratic productivity shocks to firms
 - State-dependent pricing nesting Calvo and fixed menu costs
- We study monetary policy with and without drift in the price level

Model: households

Representative household's utility

$$\frac{C_t^{1-\gamma}}{1-\gamma} - \frac{\chi N_t^{1+\psi}}{1+\psi} + \log(M_t/P_t)$$

Consumption is a CES aggregate

$$C_t = \left\{ \int_0^1 C_{it}^{\frac{\epsilon-1}{\epsilon}} di \right\}^{\frac{\epsilon}{\epsilon-1}}$$

Nominal budget constraint

$$\int_{0}^{1} P_{it}C_{it}di + M_{t} + R_{t}^{-1}B_{t} = W_{t}N_{t} + M_{t-1} + T_{t} + B_{t-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model: household optimality conditions

- Household chooses C_{it}, N_t, B_t, M_t to maximize expected utility, subject to the budget constraint
- Optimal consumption across goods

$$C_{it} = (P_t/P_{it})^{\epsilon} C_t$$
$$P_t \equiv \left[\int_0^1 P_{it}^{1-\epsilon} di\right]^{\frac{1}{1-\epsilon}}$$

Optimal labor supply, consumption, and money use

$$\chi C_t^{\gamma} N_t^{\psi} = W_t / P_t$$

$$1 = \beta R_t E_t \left[P_t C_{t+1}^{-\gamma} / \left(P_{t+1} C_t^{-\gamma} \right) \right]$$

$$M_t / P_t = C_t^{\gamma} R_t / (R_t - 1)$$

Model: monopolistic competitor firms

Firm *i* produces output
$$Y_{it} = A_{it}N_{it}$$

- Productivity is **idiosyncratic**, $\log A_{it} = \rho_A \log A_{it-1} + \varepsilon^a_{it}$, $\varepsilon^a_{it} \sim N(0, \sigma^2_a)$
- Firm *i* faces demand from households, and the government, $Y_{it} = C_{it} + G_{it}$

• The government's consumption basket is also a CES, $G_t = \left\{ \int_0^1 G_{it}^{\frac{\epsilon-1}{\epsilon}} di \right\}^{\frac{\epsilon}{\epsilon-1}}$

Model: monopolistic competitor firms

- Demand curve, $Y_{it} = (C_t + G_t)P_t^{\epsilon}P_{it}^{-\epsilon}$
- Period profits, $U_{it} = P_{it}Y_{it} W_tN_{it}$

• Discount rate,
$$Q_{t,t+1} = \beta \frac{P_t C_t^{-\gamma}}{P_{t+1} C_{t+1}^{-\gamma}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Model: firm value function

• Value function $V(P, A, \Omega) =$

 $U(P, A, \Omega) + \beta E \left\{ Q_{t,t'} \left[V(P, A', \Omega') + EG(P, A', \Omega') \right] \middle| A, \Omega \right\}$

where $EG(\cdot)$ is the *expected gain* from adjustment

$$EG(P, A', \Omega') \equiv \lambda \left[\frac{D(P, A', \Omega')}{W(\Omega')} \right] D(P, A', \Omega')$$
$$D(P, A', \Omega') = \max V(P, A', \Omega') = V(P, A', \Omega)$$

$$D(P, A', \Omega') \equiv \max_{P} V(P, A', \Omega') - V(P, A', \Omega')$$

Model: adjustment function

• $\lambda(L)$ increases with the gain from adjustment L

We postulate

$$\lambda\left(L\right) \equiv \frac{\bar{\lambda}}{\left(1 - \bar{\lambda}\right) + \bar{\lambda}\left(\alpha/L\right)^{\xi}}$$

▶ With
$$\xi
ightarrow$$
 0, $\lambda\left(L
ight) =ar{\lambda}$ Calvo

• With $\xi \to \infty$, $\lambda(L) = \mathbf{1} \{L \ge \alpha\}$ Fixed menu cost

Model: adjustment function and histogram fit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Model: monetary policy and government spending

Monetary policy is:

$$i_{t \le T} = i^{ss}$$
$$i_{t > T} = i^{ss} + \phi_{\pi} \pi_t$$

• Government spending,
$$g_t = \frac{G_t - G^{ss}}{Y^{ss}}$$
:

$$g_t = \rho_g g_{t-1} + \varepsilon_t^g$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with $\varepsilon_t^g \sim N(0, \sigma_g^2)$

Calibration

$\beta^{-12}=1.04$	Golosov-Lucas (2007)
$\gamma=2$	Ibid.
$\epsilon = 7$	Ibid.
$\psi = 1$	Common value
$\Pi^* = 1$	AC Nielsen inflation
$\phi_{\pi}=2$	Common value
$T = \{24, 36\}$	Erceg and Linde (2014)
$\rho_G = 0.9$	Ibid.
$\rho_A = 0.9$	Costain-Nakov (2011)
$\sigma_A = 0.1$	Ibid.
$\xi = \{0, 0.23, 1\}$	Ibid.
$\alpha = 0.04$	Ibid.
$ar{\lambda}=$ 0.1	Nakamura-Steinsson (2008)
	$\begin{split} \beta^{-12} &= 1.04 \\ \gamma &= 2 \\ \epsilon &= 7 \\ \psi &= 1 \\ \Pi^* &= 1 \\ \phi_{\pi} &= 2 \\ T &= \{24, 36\} \\ \rho_{G} &= 0.9 \\ \rho_{A} &= 0.9 \\ \sigma_{A} &= 0.1 \\ \xi &= \{0, 0.23, 1\} \\ \alpha &= 0.04 \\ \bar{\lambda} &= 0.1 \end{split}$

Preliminaries: textbook Calvo model

The flexible price multiplier is (Woodford, 2011)

$$\Gamma = rac{\gamma}{\gamma + \psi} \leq 1$$

Log-linearized consumption Euler equation

$$y_t - g_t = E_t (y_{t+1} - g_{t+1}) - \gamma^{-1} (i_t - E_t \pi_{t+1} - \bar{r})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Phillips curve

$$\pi_t = \beta E_t (\pi_{t+1}) + \kappa (y_t - \Gamma g_t),$$

where $\kappa = \frac{(1-\alpha)(1-\alpha\beta)}{\alpha} (\gamma + \psi)$

Calvo model with active Taylor rule

- Let ρ be the persistence of the demand shock
- Solution under a Taylor rule

$$\mu^{TR} = 1 - \frac{\left(\frac{\phi_{\pi} - \rho}{1 - \beta\rho}\kappa + \phi_{C}\right)(1 - \Gamma)}{\left(1 - \rho\right)\gamma + \left(\frac{\phi_{\pi} - \rho}{1 - \beta\rho}\kappa + \phi_{C}\right)} < 1$$

More price flexibility (higher κ) leads to a smaller multiplier

Results under state dependent pricing

1. Under an active Taylor rule more price flexibility leads to a smaller multiplier.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Taylor rule: the multiplier is smaller under SDP (< 1)

200

Constant money: the multiplier is also less than 1

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Calvo with constant interest rate of stochastic duration: Woodford's case

General solution

$$y_t - g_t = \frac{\kappa (1 - \Gamma) \rho}{(1 - \rho) (1 - \beta \rho) \gamma - \kappa \rho} g_t + a_1 \lambda_1^t + a_2 \lambda_2^t$$

When denominator Δ > 0 then λ₁, λ₂ > 1 and so setting a₁, a₂ = 0 ensures a unique bounded solution:

$$y_t = g_t + \frac{\kappa (1 - \Gamma) \rho}{\Delta} g_t = \mu^{ZLB} g_t$$

- Paradox of flexibility: as $\kappa \uparrow$, then $\Delta \to 0^+$ and $\mu^{ZLB} \to +\infty$
- Ohanian: paradox is limited to Δ > 0, otherwise μ^{ZLB} is not well defined due to multiplicity of equilibria

Werning's perfect foresight solution: deterministic T

Difference equations valid only up to T; thereafter CB follows its policy rule which determines equilibrium upon liftoff:

$$y_t = \mu^{ZLB} g_t - \frac{\kappa (1 - \Gamma) \rho}{\Delta} \frac{1 - \rho \beta \lambda_1}{1 - \beta \lambda_1^2} \left(\frac{\rho}{\lambda_1}\right)^{T-t} g_t + \frac{\pi_{T+1} + (1 - \beta \lambda_1) \gamma (y_{T+1} - g_{T+1})}{(1 - \beta \lambda_1^2) \gamma \lambda_1^{T-t}},$$

- ▶ When *T* sufficiently large and κ such that $\Delta \rightarrow 0^+$, then $\rho < \lambda_1 < 1$ and solution close to μ^{ZLB}
- ▶ For κ larger, such that $\Delta < 0$, $\rho/\lambda_1 > 1$, backward explosion
- The multiplier grows with *T*, and the Paradox of Flexibility holds for any κ

Results under state dependent pricing

2. Under monetary policy that allows a drift in prices: much larger amplification under SDP.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

With monetary policy that does not stabilize the price level – much larger amplification under SDP

200

Largest amplification in Golosov-Lucas FMC case

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

With T = 36 amplification is larger under SSDP

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Conclusions

- With monetary policy that leans against inflation under SDP the fiscal multiplier is close to flexible-prices (< 1)
- But with a rule that does not stabilize the price level there is a much larger amplification of demand shocks under SDP (>>1)
- ► The largest amplification is in the Golosov-Lucas (2007) model

Taylor rule reacting to the price level as well: SSDP

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Responses to a TFP shock under constant money

(日)、 э.