(Taylor) Rules versus Discretion in U.S. Monetary Policy. A Lesson for Ukraine

Alex Nikolsko-Rzhevskyy *Lehigh University*

The National Bank of Ukraine May 20, 2016

Rules & Discretion

- □ There are two different ways to conduct monetary policy:
- 1. Policy rules (e.g. Taylor, 1993 rule)
 - Guidelines of how policy will respond to particular data such as unemployment and inflation
 - Not necessarily a linear formula, but does have to include a strict set of instructions
- 2. Policy discretion (generally used by the Fed and NBU today)
 - No commitment to future actions, policymakers do what they believe in that moment to be best for the economy

Is Inflation Targeting a "Rule"?

- No. An inflation target is just the final goal, the destination. A
 rule is a specific path there
- Inflation targeting alone doesn't answer many important monetary policy questions
 - The instrument or instruments are not specified
 - How policy instruments should be changed is unclear
 - Different policies can lead to different variance of inflation & output, so which one to use?
 - For the NBU, different policies can result in faster or slower disinflation. Which one to choose?

Pros & Cons of Rules & Discretion

- Pros of using Policy rules
 - Increase transparency (PWC already use in reports), solve time-inconsistency (political business cycles), etc
 - Set long-run expectations (through term structure) affect the economy immediately; better than any single change
- Pros of using Policy discretion
 - Can incorporate a much wider array of information
 - No one knows the "true" model of the economy
 - Immune to structural changes (Lucas critique)
- So, which one is preferable?

Qualitative Evidence

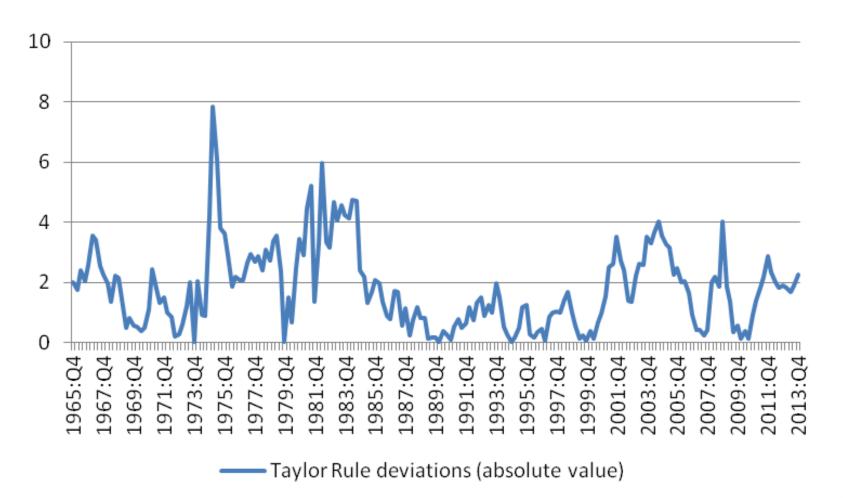
- While most central banks still exercise discretion, there's a general move towards employing rules (just as there was a move towards using inflation targeting two decades ago)
 - The Fed, the Bank of England, the Bank of Canada regularly refer to a Taylor-type rule
 - The US Congress is considering a legislation that would ask the Fed to pick a rule & then follow it (The FRA&TA of 2014)
 - Emerging and developing countries seem to use rules as well (e.g. Brazil, Chile, and Mexico)

Analytical Evidence (Case of the U.S.)

- Hard to model "discretion." Need another approach Nikolsko-Rzhevskyy, Papell, & Prodan (2015)
- Assume a rule, i.e. the Taylor (1993) rule :

$$i_{t} = \pi_{t} + \phi(\pi_{t} - \overline{\pi}) + \gamma y_{t} + R$$
$$i_{t} = 1.0 + 1.5\pi_{t} + 0.5y_{t}$$

- Construct deviations between the actual funds rate & the rule
- (Endogenously) identify eras when the Fed was implicitly following a rule – deviations from the rule are low
- Assume a reasonable loss function & compare economic performance during "rules" and "discretion" eras



Data

- Both the model and data require careful treatment, hence:
 - Use "shadow rate" of Wu & Xia as the policy rate after 2008
 - Assume a lag (4-8 quarters) between policy changes and economics performance to account for endogeneity
 - Use "real-time" RTDME data ("snapshots") that policymakers had access to to estimate the model and date the eras
 - Allow the equilibrium interest rate to vary in time (Laubach and William, 2016)
 - Multiple measures of the output gap (Q, L, HP, Un)
 - Use revised data for policy evaluation

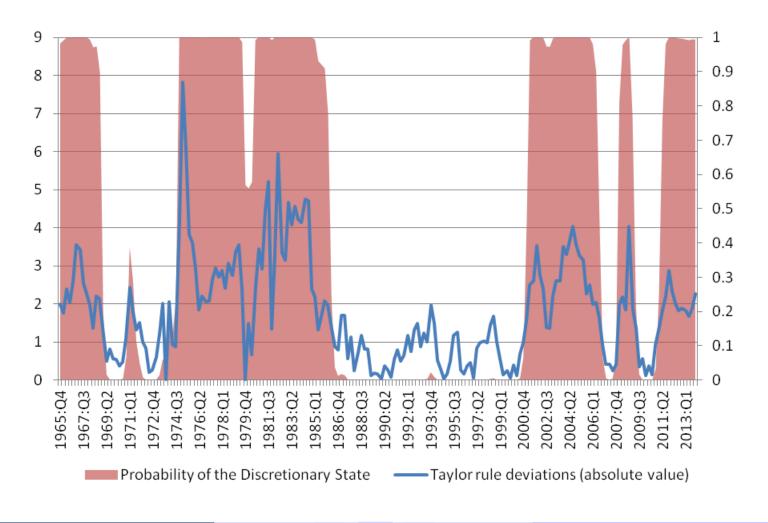
Taylor Rule Deviations

Markov Switching Model

- Recall, our first goal is to identify periods of large ("discretion")
 and small ("rules") deviations
- □ Two-state Markov Switching (Hamilton, 1989) model estimated over 1965-2015 (all available real-time data sample)

$$d_t = \mu_{St} + \varepsilon_{St}$$

- Mean and variance follow two separate MS processes with their own state distributions & transition probabilities
- Rules-based eras low mean, discretionary eras high mean



Markov Switching Model: Independently Switching Mean and Switching Variance

	State s=1	State s=2			
	(Rule-based policy)	(Discretion)			
μ_{s}	0.786	2.492			
	(0.069)	(0.089)			
$\sigma_{\!\scriptscriptstyle extsf{S}}$	0.598	2.089			
	(0.039)	(0.350)			
p ^{mean} ss	0.985	0.906			
	(0.203)	(0.303)			
p ^{var} ss	0.946	0.942			
	(0.161)	(0.155)			

Markov Switching: State Distribution for the Switching Mean

Proposed Loss Functions

- We have endogenously divided the sample into eras. Now we need to come up with a metric to compare them
- Calculate loss functions for rules-based and discretionary eras
 - 1. Okun's Misery Index
 - (Inflation + Unemployment)
 - 2. Linear absolute loss function
 - |inflation 2%| + |unemployment rate natural rate|
 - Quadratic loss function
 - (inflation 2%)² + (unemployment rate natural rate)²

Loss Functions Main Conclusion: Rules do Better than Discretion

	Average Loss During Taylor-Rule Eras	Average Loss During Discretionary Eras						
Panel A: Misery Index L = Inflation + Unemployment								
Markov Switching	8.74	10.83						
Structural Change	8.52	11.11						
Panel B: Linear Loss Function L = Inflation - 2% + Unemployment - Natural Rate								
Markov Switching	2.37	3.87						
Structural Change	2.32	3.95						
Panel C: Quadratic Loss Function L = (Inflation - 2%) ² + (Unemployment - Natural Rate) ²								
Markov Switching	5.91	14.86						
Structural Change	5.10	15.91						

Results for the US

- □ For the U.S., economic performance was stronger when the Fed was (implicitly) using the Taylor rule
- This result does not depend on the loss function, measure of the output/unemployment gap, assumed policy lag, etc
- Does that mean the 1993 rule with ½ & ½ inflation gap & output gap coefficients is the best? No.
- Rules that favor the inflation response coefficient over the output gap response coefficient are most successful (Nikolsko-Rzhevskyy, Papell, Prodan, 2016)

Alternative Taylor Rules, Loss_{discretion}/Loss_{rules}

		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
Inflation gap coefficient, δ	1.0	2.10	1.96	1.90	1.92	1.96	2.12	2.27	2.32	2.28	2.52	1.0
	0.9	1.86	2.04	2.10	1.98	2.01	2.09	2.22	2.22	2.32	2.12	0.9
	0.8	1.97	2.06	2.09	2.06	1.94	2.00	2.24	2.21	1.62	1.57	0.8
	0.7	1.76	1.91	2.02	1.91	1.93	1.62	1.71	1.67	1.56	1.37	0.7
	0.6	1.69	1.83	1.58	1.50	1.62	1.67	1.57	1.55	1.49	1.36	0.6
	0.5	1.34	1.49	1.54	1.70	1.73	1.61	1.48	1.46	1.45	1.36	0.5
	0.4	1.26	1.41	1.65	1.56	1.44	1.40	1.38	1.19	1.15	1.07	0.4
	0.3	1.36	1.31	1.24	1.29	1.18	1.18	1.15	1.07	1.06	1.05	0.3
	0.2	0.98	1.04	0.96	0.91	0.78	0.86	0.93	0.93	0.92	0.98	0.2
	0.1	0.98	1.00	0.96	0.93	0.83	1.15	1.07	1.15	1.14	1.20	0.1
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	

Output gap coefficient, γ

Lessons for Ukraine

- The banking system is being reformed, cleaned, & revitalized
- □ Inflation targeting is in place with clear long-term goals; seems to already be bearing fruit (43% -> 12%)
- Monetary policy was updated, simplified (2-week CDs), & more transparent than ever (press conferences, conferences, etc.)
- But some challenges remain that make the NBU's job harder:
 - Inflation expectations remain relatively high; UAH/USD
 - Huge heterogeneity b/w regions & apparent lack of trust for the NBU (Coibion & Gorodnichenko, 2015)
 - Investors and general public (sometimes) misjudge the policy

A room for a rule? Yes!

- □ In the past, there was no need for a rule, the UAH/\$ exchange rate was de facto fixed. How about the current situation?
- Today, Ukraine & the NBU can benefit from adopting a rule:
 - Increase credibility & transparency of monetary policy
 - Reduce political pressure on the NBU
 - Set forward expectations & simplify investment decisions
- □ Does not mean that it should be used mechanically no, it should only be referred to (& even deviated from when needed)
 - But each "large" deviation would have to be explained

Which rule would work for Ukraine?

- Performing an empirical analysis, similar to that for the US, is impossible due to a very short sample not enough datapoints to estimate a model & pick an optimal rule
- However, any reasonable rule that obeys basic monetary policy principles will help establishing credibility for the NBU
- Hence, the NBU can rely on past research, decide on a rule,
 and occasionally make (infrequent) adjustments if needed
- What do we know about the mechanics of the rules for developing countries/small open economies?

What to use as the LHS policy variable

- □ The choice is dictated by the economy (Taylor, 2012):
- 1. Monetary aggregates (more volatile economy, 2014-2015):
 - When inflation is high and volatile
 - There's uncertainty about real & equilibrium interest rates
 - Large shocks to NX and I
- 2. Short term lending rate (more stable, developed economy):
 - Should be used if the velocity of money V is unstable
- If we assume that the worst is behind Ukraine now, the NBU is doing the right thing by using the policy rate

How to choose independent RHS variables

- Floating hryvnya might need to add the UAH/\$ exchange rate to the standard two-variable rule (CGG, 1998)
- Alternatively, can include a response to the Funds Rate –
 account for policy spillover as the majority of central banks
 appear to be doing (Edwards, 2016)
- However, Ball (1999), Svensson (1999) no need to react to exchange rate, performance will deteriorate (in terms of variance of inflation and output)
- Hence, simple two-factor rules are still applicable for SOE

Conclusions

- There's a general trend toward using policy rules
- Using a rule has many positive implications, especially for developing countries such as Ukraine, such as increase credibility, anchor inflation expectations, encourage investments
- The NBU shouldn't mechanically follow a rule, but could use it as a reference and explain any deviations if needed
- A simple two-variable rule is expected to perform well for the case of Ukraine

Thank you!

