

NONLINEAR EXCHANGE RATE PASS-THROUGH TO DOMESTIC PRICES IN UKRAINE

Oleksandr FARYNA

National Bank of Ukraine

Open Research Seminar, NBU, July 22, 2016

The views expressed in this paper are those of the author and do not necessarily represent the position of the National Bank of Ukraine

- **Exchange rate pass-through** (ERPT) the percentage change in the price of imported good in local currency resulting from a one percent change in the nominal exchange rate
- Understanding the mechanism of ERPT is important for monetary policy

• "**Hot issue**" for Ukraine:

- small open economy
- transition to inflation targeting
- from fixed towards floating exchange rate
- uncertainties due to military conflict

- Exchange rate pass-through (ERPT) the percentage change in the price of imported good in local currency resulting from a one percent change in the nominal exchange rate
- Understanding the mechanism of ERPT is important for monetary policy

• "Hot issue" for Ukraine:

- small open economy
- transition to inflation targeting
- from fixed towards floating exchange rate
- uncertainties due to military conflict

• Empirical literature for Ukraine is scarce:

Source	Price	Data set	Exchange	ERPT	
Source	Index	Data Set	Rate	ERF I	
Korhonen &	CPI	1999 - 2004	USD	0.63 - 0.64	
Wachtel (2005)	CPI	1999 - 2004	EUR	0.24 - 0.28	
Beckmann &	CPI	1999 - 2010	USD	0.45	
Fidrmuc (2013)	CFI	1999 - 2010	EUR	0.25	
Novikova & Volkov (2012)	ССРІ	2004 - 2012	USD	0.35 - 0.47	
			USD	0.40 - 0.42	
Faryna (2016, forthcoming)	CCDI	2001 2015	EUR	0.20 - 0.21	
	CCPI	2001 – 2015	NEER	0.27 - 0.28	
			RUB	0.09 - 0.10	

 This paper aims to estimate ERPT to consumer prices in UKRAINE considering nonlinearities with respect to the **direction** and **magnitude** of exchange rate movements

• Agenda:

- Introduction
- Brief literature survey
- Analytical framework
- Estimation approach and data description
- Estimation results
- Concluding remarks

- Asymmetric pass-through from depreciation and appreciation
- Micro-founded "pricing to market" theory
- Mark-up responsiveness has an opposite nature:
 - Appreciation has a *positive* effect on a foreign exporter's mark-up
 - Depreciation has a *negative* effect on a foreign exporter's mark-up

· Asymmetric pass-through from depreciation and appreciation

- Micro-founded "pricing to market" theory
- Mark-up responsiveness has an opposite nature:
 - Appreciation has a *positive* effect on a foreign exporter's mark-up
 - Depreciation has a *negative* effect on a foreign exporter's mark-up

• Perfect competition:

- Foreign firm care about market share
- Appreciation: mark-up change \rightarrow price change \rightarrow high ERPT
- Depreciation: mark-up change $\rightarrow price$ change $\rightarrow low$ **ERPT**

Asymmetric pass-through from depreciation and appreciation

- Micro-founded "pricing to market" theory
- Mark-up responsiveness has an opposite nature:
 - Appreciation has a *positive* effect on a foreign exporter's mark-up
 - Depreciation has a *negative* effect on a foreign exporter's mark-up

• Perfect competition:

- Foreign firm care about market share
- Appreciation: mark-up change \rightarrow price change \rightarrow high ERPT
- Depreciation: mark-up change $\rightarrow price$ change \rightarrow low ERPT

Imperfect competition:

- Substantial market power of a foreign firm
- Appreciation: mark-up change $\rightarrow price change \rightarrow low ERPT$
- Depreciation: mark-up change \rightarrow price change \rightarrow high ERPT

Brief Literature Survey

- Nonlinear pass-through from small and large exchange rate changes
- The change of the invoice price "menu costs":
 - Small ER changes: *change of the invoice price* in order to avoid menu costs
 - Large ER changes: change of the invoice price in order to maintain market share
- Foreign firms' price-setting behavior matters

Brief Literature Survey

Nonlinear pass-through from small and large exchange rate changes

- The change of the invoice price "menu costs":
 - Small ER changes: *change of the invoice price* in order to avoid menu costs
 - Large ER changes: *change of the invoice price* in order to maintain market share
- Foreign firms' price-setting behavior matters
- Producer currency pricing (PCP) strategy:
 - *Invoice price foreign exporter's currency*
 - Small ER changes: change of the invoice price \rightarrow change of the price in local currency \rightarrow high ERPT
 - Large ER changes: change of the invoice price \rightarrow change of the price in local currency \rightarrow low ERPT

Nonlinear pass-through from small and large exchange rate changes

- The change of the invoice price "menu costs":
 - Small ER changes: *change of the invoice price* in order to avoid menu costs
 - Large ER changes: change of the invoice price in order to maintain market share
- Foreign firms' price-setting behavior matters
- Producer currency pricing (PCP) strategy:
 - *Invoice price foreign exporter's currency*
 - Small ER changes: change of the invoice price \rightarrow change of the price in local currency \rightarrow high ERPT
 - Large ER changes: change of the invoice price \rightarrow change of the price in local currency \rightarrow low ERPT

• Local currency pricing (LCP) strategy:

- Invoice price importer's currency
- Small ER changes: change of the invoice price \rightarrow change of the price in local currency \rightarrow low ERPT
- Large ER changes: change of the invoice price \rightarrow change of the price in local currency \rightarrow high ERPT

- Consider a single Foreign exporting firm
- Profit-maximization problem:

$$\max_{P^H} \pi = \frac{P^H Q}{E} - C(Q)$$

where π exporting firm's profit in Foreign currency

E exchange rate of Home currency per unit of

exporting firms currency

P^H price in Home currency

C(Q) cost function in the Foreign currency

Q quantity demanded

• First-order condition yields to:

$$P_t^H = E_t \mu_t C_t^F$$

where

 C_t^F marginal cost of exporting firm μ_t mark-up over marginal costs

• Foreign firm's mark-up depends on the demand pressure in the Home market (see Bailliu & Fujii (2004) and Cheikh (2013)):

where

$$\mu_t = \eta/(\eta-1) = \mu(Y)$$
 η price elasticity for demand of importing product demand conditions in the destination country

Nonlinear mark-up responsiveness considering exchange rate fluctuations:

$$\mu_t = \mu\left(Y, E^{\gamma(D)}\right)$$
 where $\gamma(D)$ transition function $D = \Delta e_{t-i}$ percentage change of exchange rate.

A simple log-linear reduced-form ERPT equation would be:

$$p_t^H = \alpha + \beta e_t + \gamma(D)e_t + \delta c_t^F + \rho y_t^H + \varepsilon_t$$

• Foreign firm's mark-up depends on the demand pressure in the Home market (see Bailliu & Fujii (2004) and Cheikh (2013)):

where

$$\mu_t = \eta/(\eta-1) = \mu(Y)$$
 η price elasticity for demand of importing product demand conditions in the destination country

Nonlinear mark-up responsiveness considering exchange rate fluctuations:

$$\mu_t = \mu\left(Y, E^{\gamma(D)}\right)$$
 where $\gamma(D)$ transition function $D = \Delta e_{t-i}$ percentage change of exchange rate.

• A simple log-linear reduced-form ERPT equation would be:

$$p_t^H = \alpha + \beta e_t + \gamma(D)e_t + \delta c_t^F + \rho y_t^H + \varepsilon_t$$

- Joint ERPT coefficient is measured as $(m{\beta} + m{\gamma}(m{D}))$
- Transition function $\gamma(D)$ may be further defined as:

$$\gamma(\mathbf{D}) = \begin{cases} 0, & if \ D > D^* \\ \varphi, & otherwise \end{cases}$$

• Two ERPT coefficients:

• if
$$D > D^*$$
 ERPT is $(\boldsymbol{\beta} + \boldsymbol{0}) = \boldsymbol{\beta}$;

• if
$$D \le D^*$$
 ERPT is $(\boldsymbol{\beta} + \boldsymbol{\varphi})$

- Threshold value of exchange rate change $D^* = 0$ divides extreme cases into regimes of appreciation and depreciation
- Threshold value of exchange rate change $D^* = \gamma$ divides extreme cases into regimes of small and large exchange rate changes

ERPT to consumer prices:

- p^H and e usually follow non-stationary process differentiation results in inflation equation, as in *Bailliu & Fujii* (2004)
- include inflation persistence to account for adaptive expectations, as in *Nogueira & Miguel (2007)*
- include lagged values of all independent variables to account for relationship in dynamics

• ERPT to consumer prices:

- p^H and e usually follow non-stationary process differentiation results in inflation equation, as in *Bailliu & Fujii (2004)*
- include inflation persistence to account for adaptive expectations, as in *Nogueira & Miguel (2007)*
- include lagged values of all independent variables to account for relationship in dynamics

Theoretical inflation equation:

$$\Delta p_{t}^{H} = \alpha + \sum_{i=1}^{n} \theta_{i} \Delta p_{t-i}^{H} + \sum_{i=0}^{k} (\beta_{i} + \gamma(D)) e_{t-i} + \sum_{i=0}^{q} \delta_{i} c_{t-i}^{F} + \sum_{i=0}^{r} \rho_{i} y_{t-i}^{H} + \varepsilon_{t}$$

Estimation Approach

• Autoregressive Distributed Lag (ARDL) model:

$$Y_{t} = a_{0} + \sum_{i=1}^{n} a_{1,i} Y_{t-i} + \sum_{i=0}^{k} a_{2,i} X_{t-i} + \varepsilon_{t}$$

where

 Y_t dependent variable

 X_t independent variable

 $a_{1,i}$, $a_{2,i}$ parameters of the model

 a_0 constant

 $\boldsymbol{\varepsilon_t}$ white noise.

Estimation Approach

• Autoregressive Distributed Lag (ARDL) model:

$$Y_t = a_0 + \sum_{i=1}^n a_{1,i} Y_{t-i} + \sum_{i=0}^k a_{2,i} X_{t-i} + \varepsilon_t$$

where

 Y_t dependent variable X_t independent variable

 $a_{1,i}$, $a_{2,i}$ parameters of the model

 a_0 constant

 $\boldsymbol{\varepsilon_t}$ white noise.

• Nonlinear parameters, as in *Pollard and Coughlin (2004)*:

$$Y_{t} = a_{0} + \sum_{i=1}^{n} a_{1,i} Y_{t-i} + D^{+} \sum_{i=0}^{k} a_{2,i} X_{t-i} + D^{-} \sum_{i=0}^{k} a_{3,i} X_{t-i} + \varepsilon_{t}$$

$$\mathbf{D}^{+} = \begin{cases} 1, if \ \Delta \mathbf{X}_{t-i} > \gamma \\ 0, if \ \Delta \mathbf{X}_{t-i} \le \gamma \end{cases}; \qquad \mathbf{D}^{-} = \begin{cases} 0, if \ \Delta \mathbf{X}_{t-i} > \gamma \\ 1, if \ \Delta \mathbf{X}_{t-i} \le \gamma \end{cases}$$

where

D⁺ & **D**⁻ dummy variables for high and low regimes

 ΔX_{t-i} transition variable

γ threshold value

Coefficient interpretation:

- If all variables in equation:
 - in logarithms
 - in first differences

 The percentage change of dependent variable resulting from 1% change of each regressor

Coefficient interpretation:

- If all variables in equation:
 - in logarithms
 - in first differences

• The percentage change of dependent variable resulting from 1% change of each regressor

ERPT dynamic multiplier:

• Lag coefficient:

$$\begin{array}{ll} 0. & \beta_0 = a_{20} \\ 1. & \beta_1 = a_{11}\beta_0 + a_{21} \\ 2. & \beta_2 = a_{11}\beta_1 + a_{12}\beta_0 + a_{22} \\ \mathbf{j}^{\text{th}} & \beta_j = \sum_{i=1}^n a_{1,i}\beta_{j-i} \end{array}$$

Cumulative coefficient:

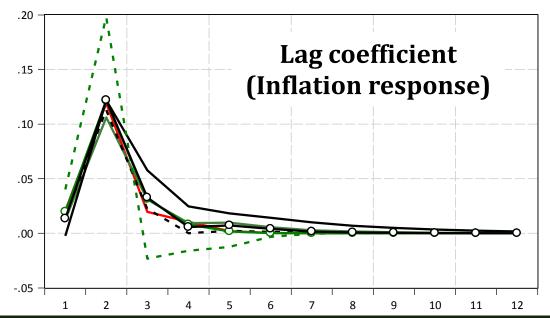
$$\beta_{\text{full}} = \sum_{j=0}^{\infty} \beta_j = \frac{\sum_{i=1}^n a_{2,i}}{1 - \sum_{i=0}^k a_{1,i}}$$

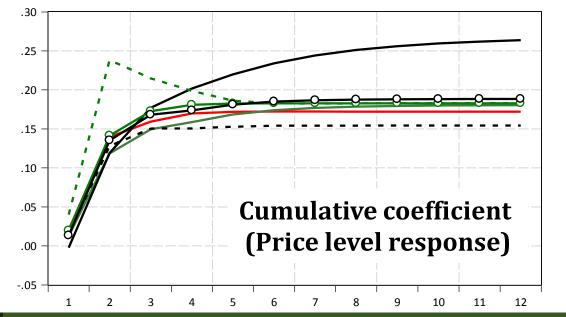
- Monthly frequency
- 2007:01 **-** 2016:04
- Disaggregated Consumer Price Indices (CPIs):
 - All consumer prices 258 indices
 - Core consumer prices 182 indices
 - Raw food prices 47 indices
 - Core food prices 50 indices
 - Core nonfood prices 104 indices
 - Prices of tradables 151 indices
 - Prices of import tradables 129 indices

Data Description

- Monthly frequency
- 2007:01 2016:04
- Disaggregated Consumer Price Indices (CPIs):
 - All consumer prices 258 indices
 - Core consumer prices 182 indices
 - Raw food prices 47 indices
 - Core food prices 50 indices
 - Core nonfood prices 104 indices
 - Prices of tradables 151 indices
 - Prices of import tradables 129 indices

- Exchange Rate Nominal Effective Exchange rate (NEER)
 - Positive change depreciation
 - *Negative change appreciation*
- Demand conditions Industrial Production
 Index (IPI) gap
 - The difference of seasonally adjusted IPI and HP-filtered IPI in logarithms
- Supply conditions Fuel Price Index (FPI) from IMF Commodity Price Statistics
 - Brent oil
 - Natural gas, and
 - Coal prices

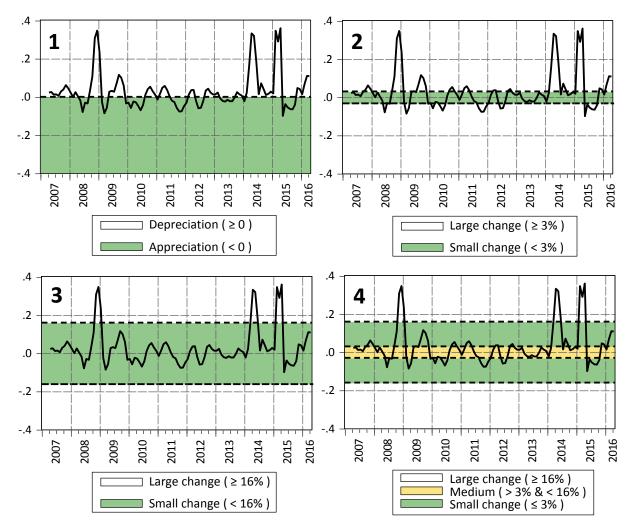

Estimation Results


• Linear ARDL:

$$CPI_{t} = a_{0} + \sum_{i=1}^{3} a_{1,i}CPI_{t-i} + \sum_{i=0}^{3} a_{2,i}NEER_{t-i} + \sum_{i=1}^{2} a_{3,i}IPI_{t-i} + \sum_{i=0}^{2} a_{4,i}FPI_{t-i} + \varepsilon_{t}$$

Linear exchange rate pass-through

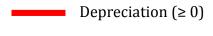
Consumer Prices	Core Consumer Prices	Raw Food Prices	Core Food Prices	Core Narrow Prices	Prices of Tradables	Import Tradables
0.172	0.181	0.183	0.268	0.154	0.183	0.189
[0.012]	[0.009]	[0.054]	[0.024]	[0.009]	[0.011]	[0.009]



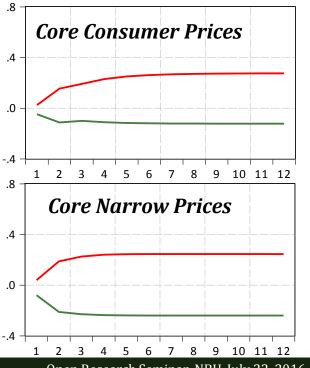
Asymmetric ERPT for Ukraine:

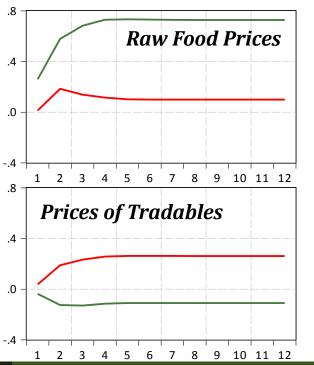
- Transition variable: $\Delta neer_{t-3}$
- Threshold value (TV):
 - 1. TV = 0%, for depreciation $\Delta neer_{t-3} \ge 0\%$ appreciation $\Delta neer_{t-3} < 0\%$
 - 2. TV=3 (MED.), for large $abs(\Delta neer_{t-3}) \geq 3\%$ small $abs(\Delta neer_{t-3}) < 3\%$
 - 3. TV = 16 (2 SE), for large $abs(\Delta neer_{t-3}) \ge 16\%$ small $abs(\Delta neer_{t-3}) < 16\%$
 - 4. TV(1) = 3 & TV(2) = 16, for small $abs(\Delta neer_{t-3}) \le 3\%$, large $abs(\Delta neer_{t-3}) \ge 16\%$ medium $3\% < abs(\Delta neer_{t-3}) < 16\%$

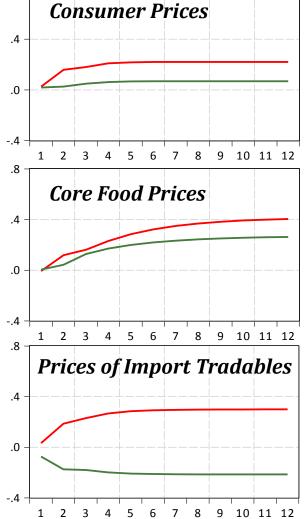
Transition variable (1 quarter NEER change) and threshold values


Asymmetric ERPT from depreciation and appreciation

	Consumer Prices	Core Consumer Prices	Raw Food Prices	Core Food Prices	Core Narrow Prices	Prices of Tradables	Prices of Import Tradables
Depreciation	0.221	0.276	0.100	0.417	0.246	0.262	0.299
(61% obs.)	[0.015]	[0.011]	[0.07]	[0.034]	[0.012]	[0.014]	[0.012]
Appreciation	0.068	-0.122	0.728	0.270	-0.24	-0.109	-0.215
(39% obs.)	[0.044]	[0.031]	[0.199]	[0.093]	[0.033]	[0.038]	[0.034]
H_0 :	###	###	###		###	###	###


Notes:


- 1. numbers are ERPT coefficients
- 2. numbers in [] are standard errors
- 3. γ threshold value
- 4. ###, ##, # indicate 1, 5, 10 % significance level to reject linearity hypotheses:


 H_0 : depreciation = appreciation

Appreciation (< 0)

Nonlinear ERPT from small and large exchange rate changes

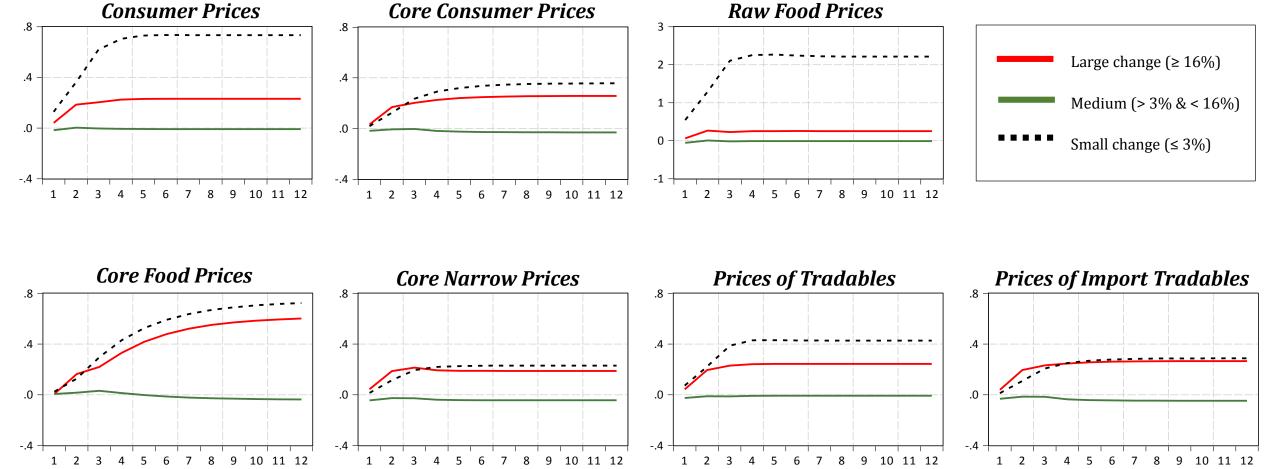
		Consumer Prices	Core Consumer Prices	Raw Food Prices	Core Food Prices	Core Narrow Prices	Prices of Tradables	Prices of Import Tradables
Median:	Large (55% obs.)	0.161 [0.012]	0.169 [0.009]	0.175 [0.055]	0.232 [0.025]	0.148 [0.010]	0.180 [0.011]	0.179 [0.01]
<i>mealan:</i> γ ≈ 0.03	Small (45% obs.) H ₁ :	0.724 [0.072] ###	0.351 [0.053] ###	2.203 [0.326] ###	0.780 [0.140] ###	0.209 [0.057]	0.416 [0.064] ###	0.275 [0.058] #
$2 SE:$ $\gamma \approx 0.16$	Large (9% obs.)	0.231 [0.018]	0.257 [0.013]	0.271 [0.083]	0.616 [0.042]	0.191 [0.014]	0.246 [0.016]	0.266 [0.014]
	Small (91% obs.)	-0.008 [0.024]	0.019 [0.016]	0.144 [0.101]	0.082 [0.045]	-0.014 [0.017]	0.031 [0.019]	-0.002 [0.017]
	H_1 :	###	###		###	###	###	###

Notes:

- 1. numbers are ERPT coefficients
- 2. numbers in [] are standard errors
- 3. γ threshold value
- 4. ###, ##, # indicate 1, 5, 10 % significance level to reject linearity hypotheses: H_1 : small= large

Nonlinear ERPT from small and large exchange rate changes

		Consumer Prices	Core Consumer Prices	Raw Food Prices	Core Food Prices	Core Narrow Prices	Prices of Tradables	Prices of Import Tradables
	Large (9% obs.)	0.231 [0.018]	0.258 [0.013]	0.253 [0.082]	0.617 [0.041]	0.188 [0.014]	0.243 [0.016]	0.266 [0.014]
$\gamma_2 \approx 0.03$	Medium (46% obs.)	-0.008 [0.024]	-0.031 [0.017]	-0.009 [0.108]	-0.04 [0.048]	-0.043 [0.018]	-0.007 [0.021]	-0.048 [0.018]
$\gamma_2 \approx 0.03$ \mathcal{R} $\gamma_2 \approx 0.16$	Small (45% obs.)	0.714 [0.073]	0.336 [0.051]	2.287 [0.328]	0.737 [0.145]	0.214 [0.055]	0.420 [0.064]	0.263 [0.056]
γ ₂ ~ 0.10	H_1 :	###		###			###	
	H_2 :	###	###	##	###	###	###	###
	H_3 :	###	###	###	###	###	###	###


Notes:

- 1. numbers are ERPT coefficients
- 2. numbers in [] are standard errors
- 3. γ threshold value
- 4. ###, ##, # indicate 1, 5, 10 % significance level to reject linearity hypotheses: H_1 : small= large; H_2 : large = medium; H_3 : small = medium

Nonlinear ERPT from small and large exchange rate changes

- Adoption of the IT and transition to flexible exchange rate may be problematic if the risks associated with exchange rate volatility remain high
- The ability of the NBU to attain its inflation targets requires a thorough understanding of the extent to which consumer prices respond to exchange rate movements

- Adoption of the IT and transition to flexible exchange rate may be problematic if the risks associated with exchange rate volatility remain high
- The ability of the NBU to attain its inflation targets requires a thorough understanding of the extent to which consumer prices respond to exchange rate movements
- Our findings:
 - for most price groups the pass-through effect from depreciation is higher than from appreciation weak competition in Ukraine
 - small changes have a considerable effect on price adjustments in Ukraine, while moderate changes are insignificant –menu costs for foreign producers
 - the pass-through effect rises in the case of extremely large exchange rate depreciations under the crisis conditions

- Adoption of the IT and transition to flexible exchange rate may be problematic if the risks associated with exchange rate volatility remain high
- The ability of the NBU to attain its inflation targets requires a thorough understanding of the extent to which consumer prices respond to exchange rate movements
- Our findings:
 - for most price groups the pass-through effect from depreciation is higher than from appreciation weak competition in Ukraine
 - small changes have a considerable effect on price adjustments in Ukraine, while moderate changes are insignificant –menu costs for foreign producers
 - the pass-through effect rises in the case of extremely large exchange rate depreciations under the crisis conditions
- The National Bank of Ukraine should be aware that consumer prices in Ukraine are sensitive to small and extremely large NEER changes, while the pass-through effect is statistically insignificant in the case of moderate NEER fluctuations

- Adoption of the IT and transition to flexible exchange rate may be problematic if the risks associated with exchange rate volatility remain high
- The ability of the NBU to attain its inflation targets requires a thorough understanding of the extent to which consumer prices respond to exchange rate movements
- Our findings:
 - for most price groups the pass-through effect from depreciation is higher than from appreciation weak competition in Ukraine
 - small changes have a considerable effect on price adjustments in Ukraine, while moderate changes are insignificant –menu costs for foreign producers
 - the pass-through effect rises in the case of extremely large exchange rate depreciations under the crisis conditions
- The National Bank of Ukraine should be aware that consumer prices in Ukraine are sensitive to small and extremely large NEER changes, while the pass-through effect is statistically insignificant in the case of moderate NEER fluctuations
- Other sources of nonlinearities in the ERPT mechanism (e.g., inflation environment, business cycles, exchange rate volatility) may be the subject of further research.

THANK YOU