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Motivation

>> Nowcasting

-> Giannone et al. (2008); Doz et al. (2011) spurred
renewed interest and development of new
methodologies

-> primarily of aggregate GDP or components, using
official data with focus on accounting for its staggered
nature through the quarter

>> Recent Covid experience highlighted the need for
alternative data sources

-> VoxEU of Diebold (2020); Woloszko (2020) on use of
Google Trends; Blanchflower and Bryson (2021) on
qualitative surveys or the "economics of walking about"




Motivation

>> Nowcasting

-> Giannone et al. (2008); Doz et al. (2011) spurred
renewed interest and development of new
methodologies

-> primarily of aggregate GDP or components, using
official data with focus on accounting for its staggered
nature through the quarter

>> Recent Covid experience highlighted the need for
alternative data sources

-> VoxEU of Diebold (2020); Woloszko (2020) on use of
Google Trends; Blanchflower and Bryson (2021) on
qualitative surveys or the "economics of walking about"

>> The Feb 24th russian invasion led to a freeze of all
official data gathering by local and national statistical
agencies

--> only left with alternative data sources




This Project

1. New methods needed to match statistcal properties of available

data

-> No official statistics released until mid 2022; use alternative data as
identified in development economics literature

-> Lit considers primarily peace-time GDP estimation: NL and Twitter
possibly “flip" sighs during the course of the invasion leading to
inconsistent parameters; Twitter data for a fee

-> Google Trends not entirely immune to these issue given the nature of
the shock ->> different factor model specification and/or estimation

2. Existing forecasting/nowcasting frameworks focus on national level GDP
and/or components
-> Spatial heterogeneity: replicating the national estimation exercise
depends crucially on availability of regional data (assuming national =
regional) ->> scope for regional factor model




Research Context

Rely on alternative indicators to build traditional nowcasting
DFM models of key macro variables

-> using payments data as in Galbraith and Tkacz (2018),
Chapman and Desai (2021) : unavailable timespan and depth in
April 2022 although very useful afterwards and in use in policy
applications

-> using electricity and google/apple mobility data: not
available due to security reasons in the early stages of the
invasion;

Main issue: many of the used variables may have no or very
weak load on the assumed latent factors driving GDP

data-summary:

- Quarterly GDP aggregate data (Q4 2021) and yearly regional
GDP data (2020)

- Google Trends (aggregate and regional)
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Google Trends Data

Google Trends = Search Volume indices of keyword search
intensity (# keyword searches/ # total searches) broken down
by region and time frame {Keyword, Category, Topicl
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-> categories: consumption, labor == JET

markets, transportation,
investment, education, inflation
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-> some issues:. these are relative
indices (w.r.t. total searches); as
total usage increases over time
and new categories become
relevant, ranking changes.

-> during a war, some categories i
may give the wrong impression
(eg. Transportation & GDP in
normal times vs. war times)



First Econ Applications

> Ettredge et al. (2005) is one of the earlier references using Google Search activity to forecast the

US unemployment rate.

> Askits Zimmermann (200g) "Google Econometrics and Unemployment Forecasting" use google
searches related to unemployment to forecast offical figures several months ahead.

> This is particularly relevant as in 2008-2009, data releases on key macrovariables are usually
delayed several months as compared to observed macro and financial shocks

> Choi and Varian 2010/2011 "Prediciting the Present with Google Trends" makes a strong point in the
potential use of google trends data to nowcast a multitude of economic variables such as
automobile sales, unemployment claims travel destination planning. and consumer confidence.

>Wu and Brynjolfsson (2010} leverage Google Search Data to forecast house prices
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> During the COVID period, timeliness and depth of
the Google Trends data became essential to
nowcast the speed and severity of the economic
contraction.

Woloszke (2020) and Burri Kaufmann {2021} build
nowcasting models with search data volumes as
key high frequency inputs lall other hard & soft
series availablel
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> Burri Kaufmann (2021) use daily financial data to build
a high-frequency GDP tracker for Switzerland; the
methods build on the availability of deep financial
markets, a chimera for many developing economies

> A two-factor model is estimated. tracking CH and
non=CH variables
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where X, X* denote the data matrices comprising
domestic and foreign variables, respectively. In addi-
tion f,f* represent the domestic and foreign factors and
Jys kay, hog are the loading matrices.

Yrh = o + ﬁh.]_frl! + .Bk.zfr—l + Vegh



> Ettredge et al. (2005) is one of the earlier references using Google Search activity to forecast the
US unemployment rate.
> Askits Zimmermann (2009) "Google Econometrics and Unemployment Forecasting” use google
searches related to unemployment to forecast offical figures several months ahead.

> This is particularly relevant as in 2008-2009, data releases on key macrovariables are usually
delayed several months as compared to observed macro and financial shocks

> Choi and Varian 2010/2011 "Prediciting the Present with Google Trends" makes a strong point in the
potential use of google trends data to nowcast a multitude of economic variables such as
automobile sales, unemployment claims,travel destination planning, and consumer confidence.

>Wu and Brynjolfsson (2010) leverage Google Search Data to forecast house prices
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Most are time-series models; AR(n) and deep-learnig

Let 1 be the log of the observation at time t. We first estimate a simple baseline

seasonal AR-1 model iy = by 1 + boyi_12 + e for the period 2004-01-01 to 2011-07-01.

Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.67266 0.763b5 0.881 0.381117
lag(y, -1) 0.64345 0.07332 8.776 3.50e-13 =*%
1ag(y, -12) 0.29565 0.07282 4.060 0.000118 =%+

Multiple R-squared: 0.7185,Adjusted R-squared: 0.7111



> During the COVID period, timeliness and depth of
the Google Trends data became essential to
nowcast the speed and severity of the economic
contraction.

Woloszko (2020) and Burri Kaufmann (2021) build
nowcasting models with search data volumes as
key high frequency inputs {all other hard & soft
series availablel

Indicator Type Frequency Release Relationship to GDP
GDP Hard Quarterly (monthly for Usually 1-2 months after
GBR, CAN and SWE) the end of the quarter
Industrial Hard Monthly Around 30-55 days after Linear
production the end of the month
Retail sales Hard Monthly Around 8-10 weeks after Linear
the end of the month
PMIs Soft Monthly Around start of the next ~ Linear in normal times, non-linear
month around crises
Consumer Soft Monthly Around start of the next  Linear in normal times, non-linear
confidence menth around crises
Google High- Daily With a 7-day delay Difficult to calibrate as historical
Mobility frequency data start mid-February 2020
Google Trends High- Daily, Weekly or Monthly With a 5-day delay Model-based relationship
frequency

Source: OECD.

Figure 2. Nowcasting GDP growth with Google trends (M-1 forecast) (contd.)
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Note: Shapley values are the contributions of a variable to the GDP growth estimate predicted by the model. Variables are ranked by importance,
and for each variable. Each point correspond to an observation (that is a given month * a given country) and its colour depends on the value of

the variable.
Source: OECD calculations
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> Burri Kaufmann (2021) use daily financial data to build
a high-frequency GDP tracker for Switzerland; the
methods build on the availability of deep financial
markets, a chimera for many developing economies

> A two-factor model is estimated, tracking CH and
non=CH variables

, r11 0
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where X, X* denote the data matrices comprising
domestic and foreign variables, respectively. In addi-
tion f, f* represent the domestic and foreign factors and
A11, A21, A9 are the loading matrices.

Yr+h = ap + ﬁh,]frlt + ﬁh,zfr—l + Veth



Gn:m: Infaticn (bhue) and Economy (orange)
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Google Inflation (blue) and Economy (orange)
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Goggle Unemployment (x) vs. Inflation (y)
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Google Trends - empirics
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DFM

Nowcasting and near term forecasting relie on
(exact or approximate) Dynamic Factor Models
specified and estimated either via a standard

Kalman Filter or EM

Xy Afy + &, & ~ N(0, EJ,J

p
fo = D Aifini+¢
=1

Gy B, n; ~ N(0,1I,).

.

Common factors can be consistently
estimated by principal components given
weak correlation of errors

s L2 e’
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PCR - digging deeper

Principal Components

-> Given a data matrix X (N obs x p variables). PCA will
perform a SVD of the centered matrix X" to find
directions in the column space of X* that have small
variance (with direction vectors v independent of
each other)

max,, Var(Xao)

subject to ||a|| =1, aTSvy =0, £=1,..., m—1,

Largest Frincipal
campanant

nnnnnnnn

-> In a subsequent stage, the PCs are used as inputs in a
regression model, state-space model, etc

Hastie, Tibshirani, Friedman 2nd ed. "The Elements of Statistical Learning"

Partial Least Squares

=> PLS is a supervised method which identifies the components
or factors (phi) to be independent of each other but also have
high correlation with a target y

{Wold et al. 1984}

max,, Corr?(y, Xa)Var(Xa)
subject to ||al| =1, alS¢r=0,0=1,...,m—1.

Hastie, Tibshirani, Friedman 2nd ed. "The Elements of Statistical Learning®

PLS as a Latent Factor Model

Lasso Princpal Companents Regressian

HTJ Monte Carlo
exersise with
estimated prediction
arror for difieres
variable selection and
regularizaton methods.




Principal Components

-> Given a data matrix X (N obs x p variables). PCA will

perform a SVD of the centered matrix X* to find
directions in the column space of X* that have small
variance (with direction vectors v independent of

each other)

max, Var(Xao)

subject to ||a| =1, a?Svy =0, £ =1,...,m — 1,



Largest Principal ¢
Component

@ Smallest Principal
Component

-> In a subsequent stage, the PCs are used as inputs in a
regression model, state-space model, etc



Partial Least Squares

=> PLS is a supervised method which identifies the components
or factors (phi) to be independent of each other but also have

high correlation with a target y
{Wold et al. 1984}

max,, Corr®(y, Xa)Var(Xa)

subject to [la|| =1, a!SP, =0, £=1,...,m — 1.

Hastie, Tibshirani, Friedman 2nd ed. "The Elements of Statistical Learning"
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PLS as a Latent Factor Model



PLS as a Latent Factor Model

T = XxW XeRYWTceRSE K<p
X = TxP +e PeRPE

y = TxC'+¢ CeRXE
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Modeling
Avenues

Model is the result in equal parts of deliberate choice & data
constraints

-> rich cross-section of potentially explanatory variables but
too rich for a t=-34 quarters for national GDP TS model; or a t=9
years, i=25 units panel (regional)

Considered:;

-> Shrinkage: added benefit is interpretability of the ML model but unstable
unless all Oblasts share the same parameters

-> PCR: reducing a large number of variables but loosing interpretability;
lots of varations on the topic

-> PLS: collapsing large number of variables and improved fit, still Loosing
interpretability

- very large literature in bioinformatics, neuroscience on the use of PLS in
"small n large p settings”

- usual genetics study has ~ 30x more variables than observations
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-> rich cross-section of potentially explanatory variables but
too rich for a t=34 quarters for national GDP TS model,; or a t=9
years, i=25 units panel (regional)
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-> Shrinkage: added benefit is interpretability of the ML model but unstable
unless all Oblasts share the same parameters

-> PCR: reducing a large number of variables but loosing interpretability;
lots of varations on the topic
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interpretability

- very large literature in bioinformatics, neuroscience on the use of PLS in
'small n large p settings”

- usual genetics study has ~ 30x more variables than observations



Sparsity to tackle asymptotic inconsistency risk

-> Chun and Keles (2010) indicate challenges to asymptaotic
consistency of the PLS estimator in a "large p small n” context, with
fixed pa relevant and increasing p - pa frrelevant variables.

-> The intuition for the lack of asymptotic consistency comes from
the ridge-like nature of the PLS algorithm. Given that PLS latent
factors load on all variables available in X, a larger fraction of
irrelevant variables weaken the ability of the algorithm to identify
the true factor directions.

-> Sparsity is achieved via variable selection in a multitude of ways,

depending on the joint specificities of data sample and machine
learning model (Lasso like, FWD or BWD Variable Selection, GA)

Insample Fit

ML model overview

Variable Selection - overview

-> A wrapper (GA) and an embbeded method (sPLS) are used to
induce sparsity: as a results, variable selection leads to improved
interpretability

-> sPLS of Chun and Keles (2010) introduces a LASSO penalty int

he optimization problem and jointly selects the optimal number of
latent factors and the amount of penaty

Out of sample Forecast

Variable Selection - the GA algorithm
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-> Chun and Keles (2010) indicate challenges to asymptotic
consistency of the PLS estimator in a "large p small n” context, with

fixed p1 relevant and increasing p - p1 irrelevant variables.

-> The intuition for the lack of asymptotic consistency comes from
the ridge-like nature of the PLS algorithm. Given that PLS latent
factors load on all variables available in X, a larger fraction of
irrelevant variables weaken the ability of the algorithm to identify

the true factor directions.

-> Sparsity is achieved via variable selection in a multitude of ways,
depending on the joint specificities of data sample and machine
learning model (Lasso like, FWD or BWD Variable Selection, GA)



-> Awrapper (GA) and an embbeded method (sPLS) are used to
iInduce sparsity: as a results, variable selection leads to improved
interpretability

-> sPLS of Chun and Keles (2010) introduces a LASSO penalty int
he optimization problem and jointly selects the optimal number of
latent factors and the amount of penaty



Genes, chromosomes and Populations
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Genes, chromosomes and Populations
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genes from fit parents at
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final considerations

-> There may be non-trivial benefits in the estimation of
latent factors via Partial Least Squares

-> Sparsity can improve estimation performance and
model interpretability

-> Geographical disaggregation offers a new modelling
avenue in terms of nowvacsting/forecasting GDP
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