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Motivations

• Data on global trade published with significant lag

• In the meantime, numerous indicators available for trade and 

macroeconomic environment

2

What about nowcasting?

• World trade highly volatile (Bussiere et al., 2013)

What about non-linear methods? And machine learning?
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Data
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• Target: monthly world trade (volumes) available since Jan. 2000 

• 600 potential regressors identified based on the literature on nowcasting 

trade (e.g., Guichard and Rusticelli, 2011; Jakaitiene and Dees, 2012; 

Bahroumi et al., 2016; Martinez-Martin and Rusticelli, 2021)

Macro. outlook

• Industrial production

• Retail sales

• Business confidence

Trade indicators

• PMI (surveys)

• Port traffic

• Customs trade (values)

200 300 Financial

• Stock markets

• Commodity prices

• Exchange rates

100
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The three-step approach
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Machine learningFactor extraction

• Summarizing information

• Orthogonalizing inputs

Pre-selection

• Ranking regressors by 

predictive power

Stock and Watson (2002)

Goulet-Coulombe et al. (2022)

Fan and Lv (2008)

Runstler (2016) “Traditional” econometrics

OLS (benchmark)

Random

Forest (RF)

Gradient 

boosting (GB)

Macro.

RF

Gradient linear

boosting

Tree-

based

Regression-

based

Markov-switching

Quantile regression
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Regression trees
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𝑥𝑘 > 3

𝑥𝑖 < 1𝑥𝑗 > 2

𝑥𝑞 < 7𝑥𝑙 > 2

2.95.1−121.0

7.313

• Set of questions

• Highly flexible

• Low bias, high variance

• Generally poor predictive 

performances
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Boosting techniques
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Gradient boosting Gradient linear boosting

• Boosting: additive method using 

trees as weak learners

• Based on computation of the 

gradient of loss function

• Overfitting controlled through 

shrinkage

• Use of linear regression instead of 

trees as weak learners

• Regularization with L1 and L2 

penalty terms

• Chen et al. (2016)
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A detour by the forest
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Random forest Macroeconomic random forest

• Average over un-correlated 

decision trees

• De-correlation of trees through 

• Bootstrapping samples 

(bagging)

• Sub-sampling variables at 

each split (Breiman, 2001)

• Canonical random forest too 

flexible for short time series

• Goulet-Coulombe (2020)

• Linear model between target 

variable and regressors but where 

coefficients can vary through time 

according to random forest
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The macroeconomic random forest – illustrated
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𝑆𝑡
𝑌𝑡 = 𝛽𝑡𝑋𝑡𝛽𝑡 = ℱ(𝑆𝑡)

𝑌𝑡 = ℱ(𝑆𝑡)

Can be different 
from regressors (𝑋𝑡)

𝛽𝑡 𝑌𝑡
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Horserace
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Pre-selection
Factor extraction

(on pre-selected variables)

Machine learning

(using factors on the RHS)

• Sure Independence 

Screening (Fan and Lv, 

2008)

• t-stat-based (Jurado et al., 

2015)

• LARS (Bai and Ng, 2008)

• Iterated Bayesian Model 

Averaging (Martinez-Martin 

and Rusticelli, 2021)

• Tree-based machine learning

➢ Random Forest (RF)

➢ Gradient boosting (GB)

• Regression-based machine 

learning

➢ Macroeconomic RF

➢ Linear GB

• “Traditional” econometrics

➢ Markov-switching

➢ Quantile regression

• OLS (benchmark)

• PCA (Stock and Watson, 

2002)

• 2-step (Doz et al., 2011)

• Quasi maximum likelihood 

(Doz et al., 2012)

• Generalized PCA (Forni et 

al., 2005)
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Rules of the horserace
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• Out-of-sample predictions

• Over Jan. 2012 – Apr. 2022

• Four horizons: 

• t-2 and t-1 (back-casts)

• t (nowcast)

• t+1 (forecast)

• Datasets at different moments of the month: 1st, 11th and 21st days
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The real-time set-up
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Train
Test

(12 months)
Out-of-sample

2000 M1 t - 12 t

In-sample

2 Factor extraction using the pre-selected variables

3

1 Pre-selection based on the in-sample period

Tuning of hyperparameters for machine learning: model fitted on 

“train” sample, validation on “test” sample

4
Out-of-sample predictions (backcasts at t-2 and t-1, 

nowcast at t, and forecast at t+1)
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Results across regression techniques
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Relative accuracy of regression techniques
(RMSFE, relative to OLS = 1)

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2012 – Apr. 2022. Performances are presented relative to the OLS benchmark (black line). Results are obtained for the average 

of the datasets mirroring data available to a forecaster at the 1st, 11th, and 21st days of the month, using a LARS for pre-selecting the 60 most informative regressors, with factors extracted through 

PCA on the pre-selected set. “Tradi.” = traditional, “ML tree” = machine learning techniques based on decision trees, “ML reg.” = machine learning techniques based on linear regressions.
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Results across regression techniques – pandemic period
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Relative accuracy of regression techniques (pandemic)
(RMSFE, relative to OLS = 1)

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2020 – Dec. 2021. Performances are presented relative to the OLS benchmark (black line). Results are obtained for the 

average of the datasets mirroring data available to a forecaster at the 1st, 11th, and 21st days of the month, using a LARS for pre-selecting the 60 most informative regressors, with factors extracted 

through PCA on the pre-selected set. “Tradi.” = traditional, “ML tree” = machine learning techniques based on decision trees, “ML reg.” = machine learning techniques based on linear regressions.
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Results across regression techniques – normal times
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Relative accuracy of regression techniques (normal times)
(RMSFE, relative to OLS = 1)

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2012 – Dec. 2019 and Jan. 2022 – Apr. 2022. Performances are presented relative to the OLS benchmark (black line). Results 

are obtained for the average of the datasets mirroring data available to a forecaster at the 1st, 11th, and 21st days of the month, using a LARS for pre-selecting the 60 most informative regressors, 

with factors extracted through PCA on the pre-selected set. “Tradi.” = traditional, “ML tree” = machine learning techniques based on decision trees, “ML reg.” = machine learning techniques based 

on linear regressions.
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Does every step really counts? The case of pre-selection
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Accuracy relative to no pre-selection
(RMSFE, relative to no pre-selection = 1)

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2012 – Apr. 2022. 

Performances are presented relative to the benchmark of no pre-selection (black line). 

Results are obtained for the average of the datasets mirroring data available to a 

forecaster at the 1st, 11th, and 21st days of the month, using PCA to extract factors.
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• Each model is compared with the 

same model WITHOUT pre-

selection – meaning a factor 

extraction on the full dataset

• Accuracy gains from pre-

selection consistent across 

models and horizons – up to 40%
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Does every step really counts? The case of factor extraction
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Accuracy relative to no factors
(RMSFE, relative to no factors = 1)

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2012 – Apr. 2022. 

Performances are presented relative to the benchmark of no factor extraction (black 

line). Results are obtained for the average of the datasets mirroring data available to a 

forecaster at the 1st, 11th, and 21st days of the month, using LARS for pre-selecting the 

60 most informative regressors.
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• Each model is compared with the 

same model WITHOUT factor 

extraction – meaning a 

regression directly on the selected 

variables

• Accuracy gains from pre-

selection consistent across 

models and horizons – around 10-

15% on average
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Comparison with workhorse model

17

Accuracy relative to DFM
(RMSFE, relative to DFM = 1)

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2012 – Apr. 2022. 

Performances are presented relative to the DFM (black line). Results are obtained for 

the average of the datasets mirroring data available to a forecaster at the 1st, 11th, and 

21st days of the month, using LARS for pre-selecting the 60 most informative 

regressors. Three-step approach uses PCA for factor extraction.

• Dynamic factor model (DFM)

based on the quasi maximum

likelihood estimator of Banbura 

and Modugno (2014)

• Using similar dataset of variables 

pre-selected by LARS
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Three-step approach with macroeconomic random forest
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Key take-aways
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• Regression-based machine learning outperforming significantly and 

consistently tree-based ML as well linear and non-linear benchmarks

• Performances of machine learning techniques significantly enhanced by 

doing first pre-selection and factor extraction

• Three-step approach outperforming a workhorse dynamic factor model
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THANK YOU
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Paper: https://www.nber.org/papers/w31419

Code: https://github.com/baptiste-meunier/NowcastingML_3step

https://www.nber.org/papers/w31419
https://github.com/baptiste-meunier/NowcastingML_3step
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A word on pre-selection techniques
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Univariate Multivariate

• Correlation-based (SIS): ranking 

based on pairwise correlation with 

target variable (CPB trade)

• T-stat-based: ranking based on 

the t-stat of an univariate 

regression on the target variable 

(CPB trade) and lags of the 

endogenous variable

• LARS: iterative forward selection 

method

• Iterated BMA: repeated calls to 

Bayesian Model Averaging which 

delivers posterior inclusion 

probability for each variable –

depending on inclusion on “best” 

models
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Results across pre-selection techniques
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Relative accuracy of pre-selection techniques
(RMSFE, relative to the no-preselection benchmark = 1)

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2012 – Apr. 2022. Performances are presented relative to the benchmark of no pre-selection (black dotted line). Results are 

obtained for the dataset mirroring data available to a forecaster at the 11th day of the month. Factors are obtained through PCA and the regression is performed through OLS.
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Pre-selection with alternative regression techniques
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Relative accuracy of pre-selection techniques
(RMSFE, relative to the no-preselection benchmark = 1)

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2012 – Apr. 2022. Performances are presented relative to the benchmark of no pre-selection (dark grey line). Results are 

obtained for the dataset mirroring data available to a forecaster at the 11th day of the month with 60 variables pre-selected by the technique under consideration. Factors are obtained through PCA

and the regression is performed through OLS. Results are presented for horizon t-2.
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LARS algorithm
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• Starting with no predictors, add the predictor 𝑥𝑖 most correlated with the target variable (𝑦) 

• Move the coefficient 𝛽𝑖 in the direction of its least-squares estimate

• The correlation of 𝑥𝑖 with the residual (𝑦 − 𝛽𝑖𝑥𝑖) gets lower

• Continue increasing 𝛽𝑖 coefficient until another predictor 𝑥𝑗 has similar correlation with 𝑦 −

𝛽𝑖𝑥𝑖 than 𝑥𝑖

• Add 𝑥𝑗 to the active set 

• Continue by now moving both coefficients 𝛽𝑖 and 𝛽𝑗 equiangularly in the direction of their 

least-squares estimates, until another predictor 𝑥𝑘 has as much correlation with the residual 

(now 𝑦 − 𝛽𝑖𝑥𝑖 − 𝛽𝑗𝑥𝑗)
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The management of real-time data flow

x1

Initial database

Time 1

Time 2

Time 3

…
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Results across factor extraction methods
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Figure A3.1. Relative accuracy of factor extraction techniques

Generalized PC PCA Quasi ML 2-step estimator AR (benchmark)

t - 2 t - 1 t t + 1

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2017 - April 2022. Performances are presented relative to the AR benchmark (black dotted 

line). Regression performed through OLS using factors as independent variables. "Generalized PC" refers to the one-sided method developed in Forni et al. 

(2005), "2-step estimator" refers to Doz et al. (2011), and "Quasi ML" to Doz et al. (2012).

Relative accuracy of factor extraction techniques
(RMSFE, relative to the no factor benchmark = 1)

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2012 – Apr. 2022. Performances are presented relative to the benchmark of no factor extraction (black dotted line).
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Comparison with elastic net
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Accuracy relative to Elastic Net
(RMSFE, relative to OLS = 1)

Notes: Accuracy is measured by the out-of-sample RMSE over Jan. 2012 – Apr. 2022. 

Performances are presented relative to the OLS (black line). Results are obtained for 

the average of the datasets mirroring data available to a forecaster at the 1st, 11th, and 

21st days of the month, using LARS for pre-selecting the 60 most informative 

regressors and PCA for factor extraction.

• As one would expect, 

performances of gradient linear 

boosting overall close to elastic 

net

• Still gains from macroeconomic 

random forest – notably 

significant in forecasting 
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General Gradient Boosting algorithm
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• Initialize the model 𝐹0 𝑥 = 0

• For 𝑚 going from 1 to 𝑴 (defined by the user)

• Compute (𝛽𝑚, 𝛾𝑚) = 𝒂𝒓𝒈𝒎𝒊𝒏𝛽,𝛾 σ𝑖=1
𝑁 𝐿(𝑦𝑖 , 𝐹𝑚−1 𝑥𝑖 + 𝛽𝑏(𝑥𝑖 , 𝛾))

• Set the new model 𝐹𝑚 𝑥 = 𝐹𝑚−1 𝑥𝑖 + 𝜖𝛽𝑚𝑏(𝑥, 𝛾𝑚)

• 𝜖 is a shrinkage parameter that slows the building of the model to prevent the overfitting and 

generally lead to better predictive performances 
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