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Motivation

A Large language models

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Radford et al. 2018
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A Large language models
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Motivation

A No foundation models for time series

(A Models trained from scratch on individual datasets (no transfer)

A Models designed uniquely for time series (no generality)
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Motivation

A Challenges of time series

A Highly diverse (comes from many different sources)

A Highly stochastic (rarely have enough information to predict well)
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Motivation

A LLMs might be the right foundation for time series

A LLMs are trained on diverse, stochastic sequences (natural language)

A LLMs are general, and can fuse time series with text descriptions
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@ Our method (LLMTime)
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LLMTime
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LLMTime - Basics
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LLMTime - Basics
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LLMTime - Basics
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LLMTime - Basics
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LLMTime - Basics

Prompt Pr— Samples
| "and fell asleep”
"The dog jumped up on the bed" "and bit my leg"
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"631, 656, 650, ..., 487, 485, 487" "479, ..y 371, 364 )
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LLMTime - Preprocessing

A Rescale such that a-percentile is 1

A Makes data small, but preserves some variation

A Offset by g-percent of the range found in the input data

A Can make data non-negative

NYU
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LLMTime - Preprocessing

0.123,1.23,12.3,123.0 - "12,123,1230,12300"
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LLMTime - Tokenization

"151,167,...,267"
"151§167}8.. 261"
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LLMTime - Tokenization
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LLMTime - Tokenization
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LLMTime - Tokenization
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LLMTime - Tokenization

"151,167,..,267" "151,167,...,267" "151,167,...,267"
"1 11 O, ...B 280 (" "151§167}8.. 261" "1913164, .. 5267 "

GPT-3 spaces GPT-3 no spaces LLaMA no spaces
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LLMTime - Tokenization

0.123,1.23,12.3,123.0 > "12,123,1230,12300"
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LLMTime - Tokenization

0.123,1.23,12.3,123.0 > "12,123,1230,12300"
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LLMTime - Next Token Prediction

0.537
( Encoder )
v P(0.537) =
A P("5") -
[ Toke+nizer] P("3"|"5") -

"8 =, ) P(*7"|"93")
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LLMTime - Next Token Prediction
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LLMTime - Next Token Prediction
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LLMTime - Next Token Prediction
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LLMTime - Next Token Prediction

Exponential

Square + Student t

ARIMA Residuals

Density
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LLMTime - Next Token Prediction
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LLMTime - Summary

A Simple preprocessing
1 Rescale and then truncate to fixed precision
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LLMTime - Summary

[ Precision is an important hyperparameter

A  Too small =>can’t model details

A Too large => wasting compute and assigning invalid likelihoods
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LLMTime - Summary

A Simple preprocessing
1 Rescale and then truncate to fixed precision

A Careful tokenization
A Numbers must map to individual digits
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LLMTime - Summary

A Simple preprocessing
1 Rescale and then truncate to fixed precision

A Careful tokenization
A Numbers must map to individual digits

A Continuous probabilistic model
A LLMs naturally represent stochastic numbers
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Outline

A Motivating large language models (LLMs) for forecasting
(A Our method (LLMTime)

a Experimental validation
A Understand why LLMs work for forecasting

A Future work
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Results - Deterministic Forecasts



Results - Darts

A Combines several datasets:

3

H
H
H

Financial data (sales)

Industrial data (energy usage/production)

Weather data (sunspots)

Healthcare data (vital signs, admissions)

NYU
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Results - Darts

A Baseline methodes:

d  ARIMA - traditional method, moving average
TCN - simple convolutional neural network
N-BEATS - neural network designed for time series

N-HiTS - improved version of N-BEATS

L O o 0

SM-GP - Gaussian process with a learned kernel
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Results - Deterministic Forecasts




Results - Monash

A Combines several datasets:

3

H
H
H

Financial data (tourism)
Industrial data (electricity demand)
Weather data (solar emissions)

Healthcare data (covid deaths)

NYU
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Results - Monash

A Baseline methods:

A Methods used for Darts

A CatBoost - widely used data mining method
A FFNN - avery simple neural network approach
J

PR - a variant of linear regression
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Results - Deterministic Forecasts
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Results - Deterministic Forecasts
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Results - Informer

A Combines several datasets:
A Financial data (exchange rate)

A Industrial data (electricity usage, traffic)

A Weather data (wind speeds)



Results - Informer

A Baseline methods:

3

H
H
H

Informer - efficient attention mechanism
Reformer - efficient attention mechanism
Transformer - standard architecture

Autoformer - time series inspired architecture

NYU
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Results - Deterministic Forecasts
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Results - Deterministic Forecasts
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Results - Stochastic Forecasts
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Results - Stochastic Forecasts
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Results - Stochastic Forecasts

GasRateCO2

WW il

HeartRate

CRPS(F,y) = [ (F(2) - 1. y)>0) dz
F'(z) is the empirical CDF produced by sampling
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Results - Stochastic Forecasts
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Results - Stochastic Forecasts
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Results - Addressing Memorization

A  How do we know the LLM has seen the test sets before?



Results - Addressing Memorization

A  How do we know the LLM has seen the test sets before?
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Comparing Models

A Scaling laws



Comparing Models

A Scaling laws
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Comparing Models
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Comparing Models
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Comparing Models

1o Calibration curve (model=pre-train) 10 Calibration curve (model=ppo)
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Using Text Conditioning
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Using Text Conditioning

[64,,,49,,16,] — "64, NaN, NaN, 49, NaN, 16, NaN"
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Using Text Conditioning

[64,,,49,,16,] — "64, NaN, NaN, 49, NaN, 16, NaN"

0% 50% 0% 50%
% Missing % Missing



Using Text Conditioning

First, let’s analyze the time series and make some observations:

1. The time series starts at a negative value, increases linearly, and
ends at a positive value.

4 2. There is no apparent periodicity or oscillation in the time series.

3. There are no sudden jumps or changes in the time series, indicating
a smooth function.

Now, let’s go through the functions in the mapping and see which one
matches our observations:

NYU



Using Text Conditioning

19

’beat’: This function has a periodic oscillation, which doesn’t
match our observations.

’sigmoid’: This function has a sigmoid shape, which doesn’t match
our observations.

’log’: This function increases logarithmically, which doesn’t match
the linear increase in our observations.

’x_times_sine’: This function has a periodic oscillation, which
doesn’t match our observationmns.

’square’: This function has a parabolic shape, which doesn’t match
our observations.

Based on our observations and analysis, the function that most likely

generated the time series is ’linear’.

Answer: linear

NYU
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Using Text Conditioning
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Outline

A Motivating large language models (LLMs) for forecasting

(A Our method (LLMTime)
d  Experimental validation

4 Understand why LLMs work for forecasting

A Future work



Why Do LLMs Work?

NEW YORKER
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A LLMs are compressors
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Why Do LLMs Work?

- LLMsare compressors “Just compress everything” also works

K(X,Y) = K(X) + K(Y|X) + O(log(K(X,Y))) @

/7

Sutskever 2023
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Why Do LLMs Work?

A Compression means finding simplifying explanations

1. Identify common patterns

2. Create arule that explains the pattern
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Why Do LLMs Work?

A Compression means finding simplifying explanations

1. Identify common patterns

2. Create arule that explains the pattern

Example: language models have a bias towards repetition



Why Do LLMs Work?

A LLMs can compress non-text data

Chunk Size Compressor

Raw Compression Rate (%)

enwik9 ImageNet LibriSpeech

gzip 32.3 70.7 36.4
o LZMA2 23.0 57.9 29.9
PNG 42.9 58.5 32.2
FLAC 89.5 61.9 30.9
gzip 48.1 68.6 38.5
LZMA2 50.0 62.4 38.2
PNG 80.6 61.7 37.6
FLAC 88.9 60.9 30.3
Transformer 200K 30.9 194.0 146.6
2048 Transformer 800K 21.7 185.1 131.1
Transformer 3.2M 17.0 215.8 228.2
Chinchilla 1B 11.3 62.2 24.9
Chinchilla 7B 10.2 54.7 23.6
Chinchilla 70B 8.3 48.0 21.0

NYU

Deletang et al. 2023
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Why Do LLMs Work?

Sequence Transformation Sequence Completion Sequence Improvement
Pattern transformations (symbolic) Simple function classes (numeric) Online policies (numeric & symbolic)
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0 # Steps 55

Mirchandani et al. 2023
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Why Do LLMs Work?

Complexity: 3
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Why Do LLMs Work?

Complexity: 3
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Why Do LLMs Work?
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Outline

A Motivating large language models (LLMs) for forecasting

(A Our method (LLMTime)
d  Experimental validation
A Understand why LLMs work for forecasting

[ Future work
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Future Work Californa o= Liu et al. 2023

exp 08/31/2014
LNCARDHOLDER
MA

END NONE

2570 24TH'STREET
ANYTOWN, CA 95818

oo 08/31/1977
RSFRNONE ) 08311977

(i
5% | VETERAN

SEX F IR BRN  EYES BRN
Ma (ondhaldi et 505 wor 1251

Iss.
DD 00/000000NNNANIANFOIYY 08/31/2009 |

A Vision-language models (VLMs) show that
many different sources can be combined Ugs  Pleassread thetexoirvif e sid vetithe dnforinas

tion in the following JSON format (note xxx is placeholder,
H H H H if the information is not available in the image, put "N/A"
as input with fine-tuning. itatesd),
{"class": xxx, "DLN": xxx, "DOB": xxx, "Name": xxx, "Ad-
dress": xxx, "EXP": xxx, "ISS": xxx, "SEX": xxx, "HGT": xxx,
"WGT": xxx, "EYES": xxx, "HAIR": xxx, "DONOR": xxx}

GPT-4V  {"class": "C", "DLN": "1234568", "DOB": "08/31/1977",
"Name": "Ima Cardholder", "Address": "2570 24th Street, Any-
town, CA 95818", "EXP": "08/31/2014", "ISS": "08/31/2011",
"SEX": "F", "HGT": "5-05", "WGT": "125 Ibs", "EYES":
"BRN", "HAIR": "BRN", "DONOR": "VETERAN"}

LLaVA {"class": "Driver License", "DLN": "CA123 456 789", "DOB":
"01/01/1990", "Name": "Amy", "Address": "Anytown, CA",
"EXP": "08/31/2023", "ISS": "Veteran", "SEX": “F", "HGT":
"5’5", "WGT": "130", "EYES": "Brown", "HAIR": "Brown",
"DONOR": "Unknown"}

LLaVA-  {"class": "C", "DLN": "1132456789", "DOB": "08/23/1971",

1.5 "Name": "Ima Cardholder", "Address": "Anytown, State, Zip",
"EXP": "08/23/2014", "ISS": "California", "SEX": "F", "HGT":
"5’5", "WGT": "123", "EYES": "Brown", "HAIR": "Brown",
"DONOR": "N/A"}




Future Work

3

Vision-language models (VLMs) show that
many different sources can be combined
as input with fine-tuning.

The real challenge in most forecasting is
combining many source of information to
make a good prediction.

User

W
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bai Iforniaus: DRIVER LICENSE .
w22 | Liuetal. 2023

exp 08/31/2014
LNCARDHOLDER

END NONE

FNIMA
P 2570 24TH STREET
ANYTOWN, CA 85818

oo 08/31/1977
RSYRNDNE 08311977
& VETERAN |
SEX F R8I EYES BRN
Ma (ondhslelct= ot 505 wor 1251

DD 00/000000NNNANIANFOIYY Gars112008 |
4

Please read the text in this image and return the informa-
tion in the following JSON format (note xxx is placeholder,
if the information is not available in the image, put "N/A"
instead).

{"class": xxx, "DLN": xxx, "DOB": xxx, "Name": xxx, "Ad-
dress": xxx, "EXP": xxx, "ISS": xxx, "SEX": xxx, "HGT": xxx,
"WGT": xxx, "EYES": xxx, "HAIR": xxx, "DONOR": xxx}

GPT-4V

{"class": "C", "DLN": "1234568", "DOB": "08/31/1977",
"Name": "Ima Cardholder", "Address": "2570 24th Street, Any-
town, CA 95818", "EXP": "08/31/2014", "ISS": "08/31/2011",
"SEX": "F", "HGT": "5-05", "WGT": "125 Ibs", "EYES":
"BRN", "HAIR": "BRN", "DONOR": "VETERAN"}

LLaVA

{"class": "Driver License", "DLN": "CA123 456 789", "DOB":
"01/01/1990", "Name": "Amy", "Address": "Anytown, CA",
"EXP": "08/31/2023", "ISS": "Veteran", "SEX": “F", "HGT":
"5’5", "WGT": "130", "EYES": "Brown", "HAIR": "Brown",
"DONOR": "Unknown"}

LLaVA-
1.5

{"class": "C", "DLN": "1132456789", "DOB": "08/23/1971",
"Name": "Ima Cardholder", "Address": "Anytown, State, Zip",
"EXP": "08/23/2014", "ISS": "California", "SEX": "F", "HGT":
"5’5", "WGT": "123", "EYES": "Brown", "HAIR": "Brown",
"DONOR": "N/A"}




