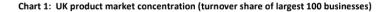
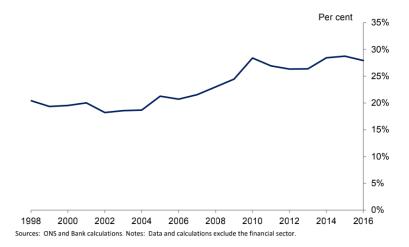
Monetary Policy and Market Structure

Mishel Ghassibe


University of Oxford National Bank of Ukraine


Product market developments and monetary policy

"The relationship between **labour markets** and monetary policy has rightly received a lot of attention in recent years< ... > The relationship between monetary policy and **product markets** has, by comparison, been the road less travelled. Yet, over the same period, structural shifts in the product market have been no less profound"

Aquilante et al. (Bank of England, 2019)

Product market concentration in the UK



Similar findings for the US (see Autor et al., 2019)

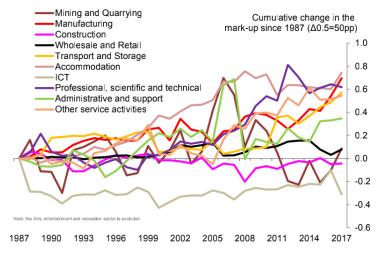
Mishel Ghassibe (University of Oxford)

Markups in the UK

Chart 2: UK-listed firms' average mark-ups

Markup changes internationally

Country	Mark-up level (2016)	Mark-up increase from 1980-2016	Implied impact on annual price inflation (pp)
Canada	1.53	0.61	1.3
France	1.50	0.53	1.2
Germany	1.35	0.29	0.7
Italy	2.46	1.46	2.5
Japan	1.33	0.30	0.7
UK	1.68	0.74	1.6
US	1.78	0.63	1.4
G7 average	1.66	0.65	1.3


Table 1: G7 mark-ups

Sources: De Loecker and Eeckhout (2018) and Bank calculations.

Notes: Final column shows a simple indicative calculation where we assume that higher firm-level mark-ups have been fully reflected in a higher economy-wide price level and therefore higher inflation rates between 1980 and 2016.

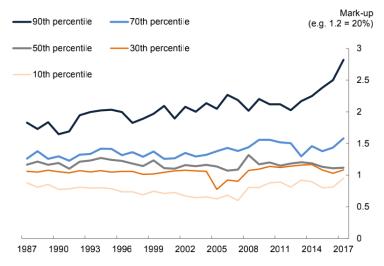

Markups in the UK: sectoral evidence

Chart 3: UK-listed firms' mark-ups by sector

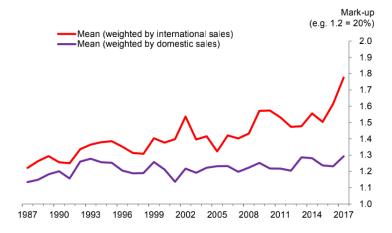

Markups in the UK: by markup deciles

Chart 5: UK-listed firms' mark-up distribution over time

Markups in the UK: by domestic vs international sales

Chart 8: Mark-ups for domestic and foreign-focussed UK-listed firms

Monetary policy and market power under monopolistic competition

Standard New Keynesian setting

• Continuum of **monopolistically competitive firms**, constant elasticity of substitution aggregation; each firm face a downward-slopping demand schedule:

$$Y_t(i) = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} Y_t$$

where ϵ is the elasticity of substitution across firms

• Steady-state pricing:

$$P(i) = \frac{\epsilon}{\epsilon - 1} MC(i)$$

where $\mu \equiv \frac{\epsilon}{\epsilon-1}$ is the long-run (steady-state) markup

Phillips curve and long-run markup

• Forward-looking Phillips curve:

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa \mathbf{x}_t + \mathbf{u}_t$$

where π_t is inflation, x_t is the output gap and u_t is cost-push shock

• Slope κ as function of structural parameters:

$$\kappa = \frac{(1-\theta)(1-\beta\theta)}{\theta} \frac{1-\alpha}{1-\alpha+\alpha\epsilon} \left(\sigma + \frac{\varphi+\alpha}{1-\alpha}\right)$$

Phillips curve and long-run markup

• Forward-looking Phillips curve:

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa \mathbf{x}_t + \mathbf{u}_t$$

where π_t is inflation, x_t is the output gap and u_t is cost-push shock

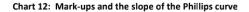
• Slope κ as function of structural parameters:

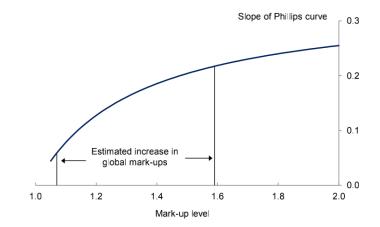
$$\kappa = \frac{(1-\theta)(1-\beta\theta)}{\theta} \frac{1-\alpha}{1-\alpha+\alpha\epsilon} \left(\sigma + \frac{\varphi+\alpha}{1-\alpha}\right)$$

Phillips curve and long-run markup

• Forward-looking Phillips curve:

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa \mathbf{x}_t + \mathbf{u}_t$$


where π_t is inflation, x_t is the output gap and u_t is cost-push shock
Slope κ as function of structural parameters:


$$\kappa = \frac{(1-\theta)(1-\beta\theta)}{\theta} \frac{1-\alpha}{1-\alpha+\alpha\epsilon} \left(\sigma + \frac{\varphi+\alpha}{1-\alpha}\right)$$

• PC slope: $\epsilon \downarrow (\mu \uparrow) \rightarrow \kappa \uparrow$

• Sacrifice ratio (SR): $\epsilon \downarrow (\mu \uparrow) \rightarrow SR \downarrow$

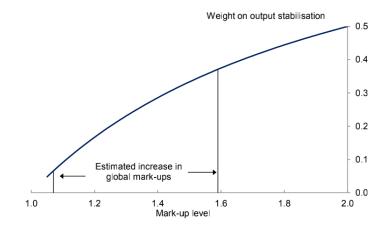
Phillips curve slope and markup

Sources: De Loecker and Eeckhout (2018), Galí (2015) model and Bank calculations. Notes: Parametrisation such that $\beta = 0.99$, $\theta = 2/3$, $\alpha = 1/3$, $\varphi = \sigma = 1$.

Optimal monetary policy

• Central bank period loss function, derived as approximation to HH utility:

$$L_t = \pi_t^2 + \gamma x_t^2, \qquad \gamma = \frac{\kappa}{\epsilon}$$


• Optimal policy under discretion:

$$\pi_t = -\frac{\gamma}{\kappa} x_t = -\frac{1}{\epsilon} x_t$$

 Lower ε implies the central bank should let inflation absorb more, as optimal to do a greater amount of (now less costly) output-smoothing in the face of trade-off inducing shocks

Optimal weight on output stabilization and markup

Chart 14: Mark-ups and optimal policy weight on output stabilisation in targeting rule

Sources: De Loecker and Eeckhout (2018), Galí (2015) model and Bank calculations. Notes: Parametrisation such that $\beta = 0.99$, $\theta = 2/3$, $\alpha = 1/3$, $\varphi = \sigma = 1$.

Monetary policy and market power under oligopoly (Wang and Werning, 2020)

Beyond monopolistic competition

• Suppose there is now a finite number of firms *n*, which measures **concentration**, so firms engage in strategic behaviour

Proposition (Wang and Werning, 2020)

In a sector with n firms, the slope of the reaction function around the steady state $\beta = \frac{\partial g_i}{\partial g_k}(\bar{p})$ satisfies

$$(n-1)\beta = \frac{\lambda}{\lambda+\rho} \frac{1}{\frac{n-2}{n-1} + \frac{1}{n-1}\left(\frac{-\epsilon-1}{-\epsilon-\frac{\mu}{\mu-1}}\right)}$$

Beyond monopolistic competition

• Suppose there is now a finite number of firms *n*, which measures **concentration**, so firms engage in strategic behaviour

Proposition (Wang and Werning, 2020)

In a sector with n firms, the slope of the reaction function around the steady state $\beta = \frac{\partial g_j}{\partial p_k}(\bar{p})$ satisfies

$$(n-1)\beta = \frac{\lambda}{\lambda+\rho} \frac{1}{\frac{n-2}{n-1} + \frac{1}{n-1}\left(\frac{-\epsilon-1}{-\epsilon-\frac{\mu}{\mu-1}}\right)}$$

Proposition (Wang and Werning, 2020)

The cumulative output effect of a monetary shock is:

$$\int_0^\infty \log\left(\frac{C(t)}{\bar{C}}\right) dt = \frac{\delta}{\sigma\lambda} \times \int_s \frac{ds}{1 - (n_s - 1)\beta_s}$$

Conclusion

- Tremendous product market developments over the last decades, strongly indicative of higher **market power**
- Implications for monetary policy still under-researched
- Standard NK models with monopolistic competition indicate that lower elasticity of substitution=higher markups and leads to steeper Phillips and lower sacrifice ratio
- Less clear once relax the crucial assumption of monopolistic competition