Exchange rate pass-through: Evidence from sectoral data

Ida Hjortsø and John Lewis

Bank of England

March 2021

Research question

Can disaggregated data help us understand exchange rate pass-through to import prices?

- Import prices at the sectoral level
 - Many series of import prices and exchange rates to exploit
 - Exchange rates might differ across groups ⇒ more variation
 - Divergent exchange rate pass-through across groups
 - New lens to study asymmetry (appreciations vs depreciations), non-linearity (big vs small), vehicle currency pricing (outsize role for dollar)

Related Literature

- Papers looking at microdata: regress bilateral exchange rate on shipment import prices.
 - Modern literature starts with Gopinath and Rigobon (2008), Gopinath, Itskhoki and Rigobon (2010).
 - Devereux et al (2017), find similar results for Canada
- Papers à la Campa-Goldberg (2005), regressing aggregate exchange rate index on aggregate import price index...
 - Emphasis often on understanding determinants of ERPT
 - Monetary policy (Gagnon & Ihrig, 2004); Exchange Rate volatility (Berger and Vavra, 2013); Trade integration (Gust et al 2010)

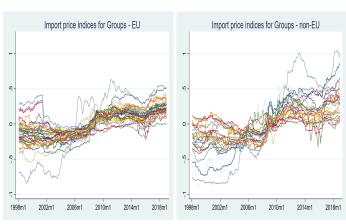
This Paper

- Use sectoral import price data for 55 sectors
- Compute sector-specific exchange rate index using weights from COMTRADE data on UK imports
- Estimate set of sector-specific ECMs where long run coefficients, short run lag lengths and short run coefficients are allowed to differ across sectors
- Aggregate these up to produce "Impulse response functions" at the aggregate level
- Test for non-linearities and asymmetries in the short-run coefficients
- Analyse role of third currency invoicing effects ("Dollar currency pricing")

Key takeaways

Significant heterogeneity across sectors

Introduction 000

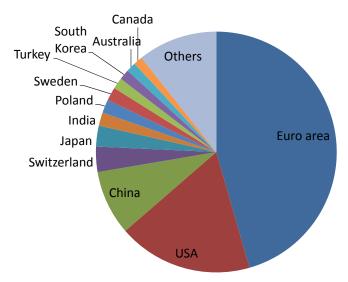

- Aggregate long run passthrough is 0.74
- Bulk of passthrough occurs within 12 months
- Asymmetries at sector level, but largely cancel out in aggregate
- Larger changes have quicker passthrough
- Quicker and fuller passthrough for US-dollar driven changes (double on impact, a fifth higher after 12 mobths)

Suggestions for modelling ERPT with Big Data

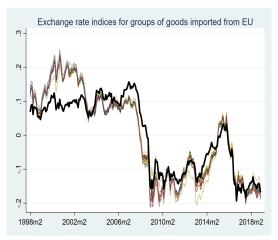
Data & Methodology

Import prices

- 54 sectoral indices from UK's ONS. Incomplete coverage due to missing data + structural breaks
- Drop series with > 2 SBs. Correct for 1 or 2 SBs

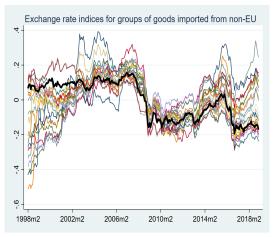


Group-specific exchange rate indices


$$\Delta ER_t^i = \sum_j \left[w_t^{i,j} \Delta S_t^j \right]$$

- 42 bilateral exchange rates
- Defined European style: Increase=Appreciation
- w^{i,j}: share of group i imports from country j
- Weights computed using UN Comtrade import data, matching similar sectoral classification
- ⇒ group-specific origin-weighted exchange rate indices
- ⇒ relevant ER for pricing imports, for each group of good

Intermezzo: UK ERI weights EU



Exchange rate indices EU

Note: The black line is the BoE ERI

Exchange rate indices non-EU

Note: The black line is the BoE ERI

Other variables

- World export prices: $\Delta WP_t^i = \sum_j w_t^{i,j} \Delta P_t^j$
 - control for foreign costs of production (according to country of origin)
- Oil prices and non-energy commodity prices
 - control for specific costs of production
- PPI output prices, for groups
 - control for domestic competitive pressures and global changes in group-specific costs
- Index of production, for industries
 - control for domestic demand conditions

Error correction model

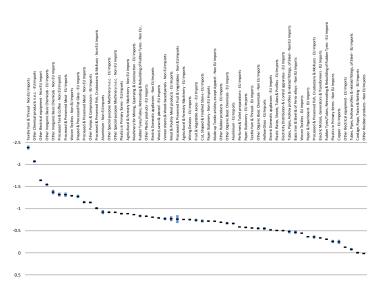
Most groups: co-integrated exchange rate, import price and foreign export price series \Rightarrow ECM

SR dynamics, LR equilibrium between exchange rates and prices

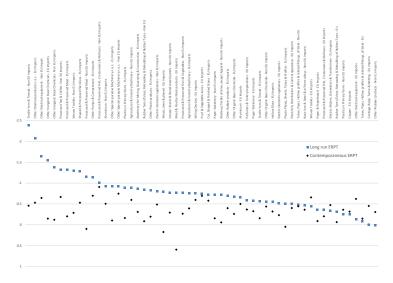
$$\begin{split} \Delta P_{i,t}^{M} = & \beta_{i}^{0} + \beta_{i}^{1} [P_{i,t-1}^{M} - (\alpha^{1} S_{i,t-1} + \alpha^{2} P_{i,t-1}^{F})] \\ &+ \sum_{\rho=0}^{\text{Le1}_{i}} \beta_{\rho,i}^{2} \Delta S_{i,t-\rho} + \sum_{\rho=0}^{\text{Le2}_{i}} \beta_{\rho,i}^{3} \Delta P_{i,t-\rho}^{F} + \sum_{\rho=1}^{\text{Ld}_{i}} \beta_{\rho,i}^{4} \Delta P_{i,t-\rho}^{M} \\ &+ \sum_{n=1}^{\text{Nex}} \sum_{\rho=0}^{\text{Lex}(n)_{i}} \beta_{\rho,i}^{4+n} \Delta X_{i,t-\rho}^{n} + \epsilon_{i,t} \end{split}$$

 X_i^1 : Oil prices

 X_i^2 : Non-energy prices

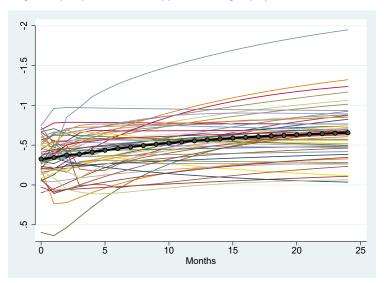

 X_i^3 : Domestic producer prices in sector i

 X_i^4 : Industrial production in industry I

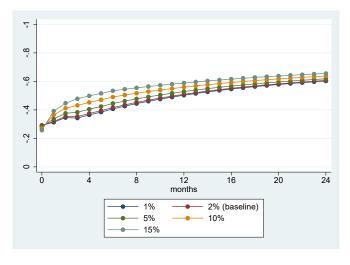

Lag length determined by Akaike criterion, differs across groups

Results

Long-run pass-through

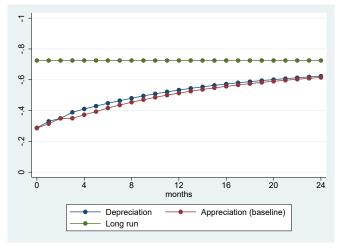


Contemporaneous vs Long-run passthrough

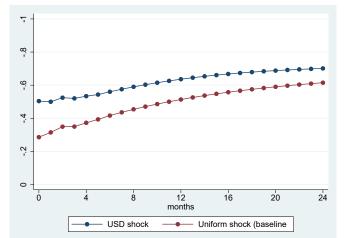


Impulse responses of import prices

% change in import prices after 1% appreciation of group-specific ER



- SR: Include extra term $\Delta s * |\Delta s|$
- NL terms significant in 32/55 sectors


Asymmetric ERPT: Results

- SR : Include interaction terms ∆s * Depr
- Term significant in 25/55 sectors with mixed signs: largely cancels out in aggregate

Dollar Currency Pricing: Results

- SR: Diff between exchange rate and USD move $\Delta S \Delta S$ USD
- 1% change in ERI delivered entirely by USD movement (other currencies don't move)
- Instant PT is twice as much, about a fifth higher after 12 months

What have we learned?

- Heterogeneity across groups of goods
- Aggregate ERPT: SR: -0.28; LR: -0.74
- The larger the ER change, the higher is SR ERPT
- Sectoral variation in sign of asymmetry, cancels out when aggregating upwards
- Evidence of dollar currency pricing: faster passthrough of USD led changes

Product/Shipment Level Data

- The most disaggregated form of data, closest in spirit to individual goods
- Can be scraped from web or obtained from customs data if sufficiently granular or more creative sources!
- Need to be sure you have the "same" product each period
- Advantages:
 - Can yield large datasets
 - Good for testing hypothesis about firm behaviour
 - You can trace origin country (x-sectional variation in exchange rate good for identification)
- Disadvantages:
 - External validity: How do you know it applies to other goods/products
 - May be far removed from/difficult to map into aggregate indices used for macromodels + policy analysis

Unit Value Data

- Value divided by some measurement units: not a price! (e.g. value of a kilo of shoes)
- For UK, I used customs data split up into around 3000 goods types
- Very noisy, but you have a lots of datapoints and can pool over similar products (hierachical industry classification helps)
- Advantages:
 - Can aggregate back up into aggregate models
 - In theory covers "universe of imports"
 - You can trace origin country (x-sectional variation in exchange rate good for identification)
- Disadvantages:
 - Data are noisy
 - Doesn't control for quality, varieties or other compositional effects.

Introduction Da

General Tips

- Be creative: There is loads of interesting data out there in machine readable form!
- Don't be afraid of tradeoffs: No perfect dataset exists- think about goals of your analysis + potential empirical tools that can overcome weaknesses
- Remember data matching has big gains: Either combining two datasets (e.g. firm level with macro) to get additional variables/variation. Can use Al/ML/textual analysis to help match up data.
- Multi-dimensional data is really valuable: o * i beats big n: country-product-firm variation is useful