Price Setting in Online Markets: Does IT Click?

Yuriy Gorodnichenko University of California, Berkelev & NBER Slavik Sheremirov Federal Reserve Bank of Boston Oleksandr Talavera University of Sheffield

The views expressed herein are those of the authors and not of the Federal Reserve Bank of Boston nor the Federal Reserve System.

Price Rigidity: Background

Significant price rigidity in brick-and-mortar stores

 Bils and Klenow (2004), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008)

Price Rigidity: Background

Significant price rigidity in brick-and-mortar stores

 Bils and Klenow (2004), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008)

Potential explanations:

- costs of nominal price adjustment (need to reprint price tags)
- search costs (consumers need to drive around multiple stores)
- costly to monitor competitors' prices
- informational frictions (uncertainty about demand, economy, etc.)
- customer markets (price fluctuations alienate consumers)

Importance of Sticky Prices

Price rigidity gives rise to monetary non-neutrality and its source determines the degree of non-neutrality:

- the degree is lower in state- than in time-dependent models (e.g., menu cost vs. Calvo)
- models of "mechanical" rigidity may produce neutrality (e.g., Head et al. 2012)
- rigidity in posted and regular (excluding sales) prices affects MP (Kehoe and Midrigan 2012)
- even for a given source of rigidity, details matter (e.g., menu-cost models with multiproduct firms)

The source of price rigidity affects inflation persistence (Fuhrer 2006, 2010)

Motivation

We look at markets where these frictions are smaller (online)

- lower costs of price changes expect shorter spells and smaller price changes
- lower search costs expect smaller price dispersion
- low cost of monitoring competitors' prices expect high synchronization
- unique opportunity for price experimentation expect dynamic pricing
- guarantees are partly outsourced to a shopping platform (e.g., Amazon Marketplace, Google Trusted Store) expect smaller role of reputation and customer relationship

Importance of Online Markets

Total e-retail sales in the U.S. in 2013:

- \$263.3 billion
- ► 5.6% of total retail sales

Importance of Online Markets

Total e-retail sales in the U.S. in 2013:

- ▶ \$263.3 billion
- ► 5.6% of total retail sales

Annual av. growth of global e-commerce in 2006–2011 was 13%

Global e-retail sales to reach \$1.4 trillion by 2015 (Cisco's projection)

Importance of Online Markets

Total e-retail sales in the U.S. in 2013:

- \$263.3 billion
- 5.6% of total retail sales

Annual av. growth of global e-commerce in 2006–2011 was 13%

Global e-retail sales to reach \$1.4 trillion by 2015 (Cisco's projection)

The market is shaped by many big players (Amazon, Bestbuy, eBay, Google, Walmart)

- ▶ In 2013, Amazon's U.S. revenue was \$75.5 bln (≈that of Target)
- ▶ In 2013, Amazon sold 230 mln items (≈30 times > than Walmart)

- ► High reliability (obtained directly from the shopping platform)
- Broad coverage (not just electronics, books, or apparel)
- Long—for online data—time series (almost 2 years)
- Multiple countries (U.S. and U.K.)

- ► High reliability (obtained directly from the shopping platform)
- Broad coverage (not just electronics, books, or apparel)
- Long—for online data—time series (almost 2 years)
- Multiple countries (U.S. and U.K.)
- Daily frequency (necessary for dynamic pricing)
- Multiple sellers (necessary for price dispersion)
- Unique product code level (comparable to UPC for offline stores)
- Product description (up to a narrow category)

- High reliability (obtained directly from the shopping platform)
- Broad coverage (not just electronics, books, or apparel)
- Long—for online data—time series (almost 2 years)
- Multiple countries (U.S. and U.K.)
- Daily frequency (necessary for dynamic pricing)
- Multiple sellers (necessary for price dispersion)
- Unique product code level (comparable to UPC for offline stores)
- Product description (up to a narrow category)
- Data on clicks for each price quote (proxy for sales in offline data)

 Prices are more flexible online than offline but the difference is quantitative rather than qualitative

- Prices are more flexible online than offline but the difference is quantitative rather than qualitative
- Models of menu and search costs are likely incomplete
 - 1. Frequency of adjustment is higher online
 - 2. The size of changes is similar to that offline
 - 3. Synchronization is low (even over long time horizons)
 - 4. Price dispersion is similar to that offline

- Prices are more flexible online than offline but the difference is quantitative rather than qualitative
- Models of menu and search costs are likely incomplete
 - 1. Frequency of adjustment is higher online
 - 2. The size of changes is similar to that offline
 - 3. Synchronization is low (even over long time horizons)
 - 4. Price dispersion is similar to that offline
 - 5. Price-setting is related to market factors (not in macro models) (competition, size, returns to search, etc.)
 - 6. Data on quantity margin (clicks) improves measurement but doesn't change qualitative conclusions
 - 7. Striking similarities between the U.S. and the U.K.

- Prices are more flexible online than offline but the difference is quantitative rather than qualitative
- Models of menu and search costs are likely incomplete
 - 1. Frequency of adjustment is higher online
 - 2. The size of changes is similar to that offline
 - 3. Synchronization is low (even over long time horizons)
 - 4. Price dispersion is similar to that offline
 - 5. Price-setting is related to market factors (not in macro models) (competition, size, returns to search, etc.)
 - 6. Data on quantity margin (clicks) improves measurement but doesn't change qualitative conclusions
 - 7. Striking similarities between the U.S. and the U.K.
 - 8. No evidence of dynamic pricing at high frequencies but some evidence at low freq. for micro shocks

Relation to Literature

- Price stickiness
 - offline (Bils and Klenow 2004; Klenow and Kryvtsov 2008; Nakamura and Steinsson 2008, 2012; Klenow and Malin 2010; Eichenbaum, Jaimovich, and Rebelo 2011; Kryvtsov and Vincent 2014)
 - online (Cavallo 2012; Cavallo, Neiman, and Rigobon 2014; Gorodnichenko and Talavera 2014)
- ► Price dispersion
 - offline (Lach 2002; Kaplan and Menzio 2014; Sheremirov 2014)
 - online (Brynjolffson and Smith 2000; Chevalier and Goolsbee 2003; Baye, Morgan, and Scholten 2004, 2010; Lünnemann and Wintr 2011)
- Responses to demand shocks (Warner and Barsky 1995)

THEORY

- Price stickiness (Benabou 1988, 1992; Diamond 1993; Golosov and Lucas 2007; Guimaraes and Sheedy 2011; Midrigan 2011; Alvarez and Lippi 2014)
- Dispersion and IO (Reinganum 1979; MacMinn 1980; Varian 1980)

NOMINAL RIGIDITIES, MP, AND INFLATION PERSISTENCE

(Woodford 2003; Fuhrer 2006, 2010; Olivei and Tenreyro 2007; Head et al. 2012; Kehoe and Midrigan 2012)

A Typical Shopping Platform

Nabi 2 Kids 7 Android Tablet - NABI2NVA

\$180 online

Handheld - Android OS - Wi-Fi Only - 7 inch - With Camera

The nabl 2 is a full-featured tablet made especially for kids. It comes preloaded with more than \$200 worth of apps, including 25 free games, 50 free songs, 30 free books, and more. In addition, the nabl 2 features state-standardized, core curriculum in math, science, social...more >

Browse Tablet Computers »

Online stores Nearby stores Related items Reviews Details

Online stores shipping to Berkeley, CA

Free shipping Refurbished / used					
Sellers ¥	Seller Rating	Details	Base Price	Total Price	Sponsored ()
RadioShack	***** (5,379)	Free shipping	\$199.99 \$17.50 tax	\$217.49	Shop »
eBay - electronic_express	**** (605)	Free shipping, No tax	\$206.97	\$206.97	Shop »
Abt Electronics & Appliances	**** (725)	No tax	\$199.99 \$7.13 shipping	\$207.12	Shop »
TechieWarehouse.com	10 ratings	No tax	\$269.99 \$3.99 shipping	\$273.98	Shop »
Walmart	**** (140)	Free shipping	\$179.99 \$15.75 tax	\$195.74	Shop »
eBay - save-on-retail + Show all 2	**** (369)	Free shipping, No tax	\$229.98	\$229.98	Shop »
eBay + Show all 25	No rating	No tax	\$189.99 \$0.85 shipping	\$196.84	Shop »
eBay - essentialtreasure	**** (203)	Free shipping, No tax	\$207.00	\$207.00	Shop »

- May 2010 to February 2012
- Daily frequency
- United States and United Kingdom

- May 2010 to February 2012
- Daily frequency
- United States and United Kingdom
- Price and Clicks for good, seller, date
- ▶ \approx 27,000 sellers in the U.S. and \approx 9,000 sellers in the U.K.
- ► >50,000 goods in each country

- May 2010 to February 2012
- Daily frequency
- United States and United Kingdom
- Price and Clicks for good, seller, date
- ▶ \approx 27,000 sellers in the U.S. and \approx 9,000 sellers in the U.K.
- ► >50,000 goods in each country
- ▶ Price distribution across goods, U.S. (N = 52,776)

5th Per-	25th Per-		75th Per-	95th Per-
centile	centile	Median	centile	centile
(1)	(2)	(3)	(4)	(5)
\$4	\$11	\$25	\$71	\$474

- May 2010 to February 2012
- Daily frequency
- United States and United Kingdom
- Price and Clicks for good, seller, date
- ▶ \approx 27,000 sellers in the U.S. and \approx 9,000 sellers in the U.K.
- ► >50,000 goods in each country
- ▶ Price distribution across goods, U.S. (N = 52,776)

	5th Per-	25th Per-		75th Per-	95th Per-
	centile	centile	Median	centile	centile
	(1)	(2)	(3)	(4)	(5)
No weights	\$4	\$11	\$25	\$71	\$474
Click weighted	\$7	\$22	\$61	\$192	\$852

Coverage

Category	Goods	Sellers
	(1)	(2)
Media	14,370	3,365
Electronics	7,606	8,888
Home and Garden	5,150	6,182
Health and Beauty	4,425	3,676
Arts and Entertainment	2,873	2,779
Hardware	2,831	3,200
Toys and Games	2,777	3,350
Apparel and Accessories	2,645	2,061
Sporting Goods	2,335	2,781
Pet Supplies	1,106	1,241
Luggage and Bags	1,077	1,549
Cameras and Optics	978	2,492
Office Supplies	849	1,408
Vehicles and Parts	575	1,539
Software	506	1,041
Furniture	334	1,253
Baby and Toddler	160	654
Business and Industrial	67	324
Food, Beverages and Tobacco	67	174
Mature	43	385
Services	26	119
Not Classified	1,976	3,465
Total	52,776	27,308

Prices for a Smartphone in May 2011

Weighting Schemes

Let f_{is} be a stickiness measure for good *i* sold by seller *s* We compute 3 aggregate measures:

1. Unweighted mean

$$\bar{f} = \sum_{i} \frac{1}{N} \sum_{s} f_{is} \frac{1}{S}$$

Weighting Schemes

Let f_{is} be a stickiness measure for good *i* sold by seller *s We compute 3 aggregate measures:*

1. Unweighted mean

$$\bar{f} = \sum_{i} \frac{1}{N} \sum_{s} f_{is} \frac{1}{S}$$

2. Within-good weighted mean

$$\bar{f}^{\text{within}} = \sum_{i} \frac{1}{N} \sum_{s} f_{is} \cdot \underbrace{\frac{Q_{is}}{\sum_{s} Q_{is}}}_{\substack{\text{within-good weights}}}$$

Weighting Schemes

Let f_{is} be a stickiness measure for good *i* sold by seller *s We compute 3 aggregate measures:*

1. Unweighted mean

$$\bar{f} = \sum_{i} \frac{1}{N} \sum_{s} f_{is} \frac{1}{S}$$

2. Within-good weighted mean

$$\bar{f}^{\text{within}} = \sum_{i} \frac{1}{N} \sum_{s} f_{is} \cdot \underbrace{\frac{Q_{is}}{\sum_{s} Q_{is}}}_{\substack{\text{within-good weights}}}$$

3. Between-good weighted mean

Regular and Posted Prices

Lots of price changes last for a limited period of time (Nakamura and Steinsson 2008, Eichenbaum, Jaimovich, and Rebelo 2011)

Excluding temporary changes (sales) increases duration of spells from 4 to 8–11 months (Bils and Klenow 2004, Nakamura and Steinsson 2008)

Regular and Posted Prices

Lots of price changes last for a limited period of time (Nakamura and Steinsson 2008, Eichenbaum, Jaimovich, and Rebelo 2011)

Excluding temporary changes (sales) increases duration of spells from 4 to 8–11 months (Bils and Klenow 2004, Nakamura and Steinsson 2008)

Sales do not affect monetary non-neutrality (Kehoe and Midrigan 2012, Guimaraes and Sheedy 2011) are acyclical (Coibion, Gorodnichenko, and Hong 2012) may interact with regular prices (Sheremirov 2014) are part of "sticky price plans" (Anderson et al. 2014)

Frequency of Sales

_					
_		Mean	Standard	Med.	
		Freq.	Deviation	Freq.	
		(1)	(2)	(3)	
	No	1.3	3.1	0.0	
	W	1.5	3.2	0.0	
	В	1.7	1.9	1.4	

One-week two-sided sales filter (Anderson et al. 2014)

Frequency of Sales

	Mean	Standard	Med.	
	Freq.	Deviation	Freq.	
	(1)	(2)	(3)	
Online				
No	1.3	3.1	0.0	
W	1.5	3.2	0.0	
В	1.7	1.9	1.4	
Offline	1.9			

One-week two-sided sales filter (Anderson et al. 2014)

Sales are almost as frequent online as offline

Frequency and Size of Sales

	Mean	Standard	Med.	Med.
	Freq.	Deviation	Freq.	Size
	(1)	(2)	(3)	(4)
Online				
No	1.3	3.1	0.0	10.5
W	1.5	3.2	0.0	4.8
В	1.7	1.9	1.4	4.4
Offline	1.9			29.5

One-week two-sided sales filter (Anderson et al. 2014)

Sales are almost as frequent online as offline

However, consumers get a better discount offline

Synchronization of Sales

Synchronization Rate
$$=$$
 $\frac{A-1}{B-1}$, $A \ge 1$, $B \ge 2$

where A is # of sellers with sales and B is total # of sellers

Synchronization of Sales

Synchronization Rate
$$=$$
 $\frac{A-1}{B-1}$, $A \ge 1$, $B \ge 2$

where A is # of sellers with sales and B is total # of sellers

	Across Sellers		
	Mean	Std.	Med.
	(1)	(2)	(3)
No	0.8	5.2	0.0
W	1.0	6.3	0.0
В	1.8	4.7	0.2

Sales are not particularly synchronized consistent with models of segmented markets (e.g., Guimaraes and Sheedy 2011)

Synchronization of Sales

Synchronization Rate
$$=$$
 $\frac{A-1}{B-1}$, $A \ge 1$, $B \ge 2$

where A is # of sellers with sales and B is total # of sellers

	Across Sellers			 Acr	oss Goo	ods
	Mean (1)	Std. (2)	Med. (3)	Mean (4)	Std. (5)	Med. (6)
No	0.8	5.2	0.0	2.1	9.6	0.0
W	1.0	6.3	0.0	2.4	11.4	0.0
В	1.8	4.7	0.2	2.1	1.0	2.4

Sales are not particularly synchronized consistent with models of segmented markets (e.g., Guimaraes and Sheedy 2011)

Online retailers conduct sales for specific products

Are prices more flexible online?
		Raw		
Weights:	No	W	В	Offline
	(1)	(2)	(3)	(4)
Median Freq., %	14.0	16.7	19.3	4.7
Duration, weeks	6.6	5.5	4.7	20.8

		Raw		
Weights:	No	W	В	Offline
	(1)	(2)	(3)	(4)
Median Freq., %	14.0	16.7	19.3	4.7
Duration, weeks	6.6	5.5	4.7	20.8
Absolute Size, %	11.0	10.7	11.2	10.7

		Raw		-
Weights:	No	W	В	Offline
	(1)	(2)	(3)	(4)
Posted Price				
Median Freq., %	14.0	16.7	19.3	4.7
Duration, weeks	6.6	5.5	4.7	20.8
Absolute Size, %	11.0	10.7	11.2	10.7
Regular Price				
Median Freq., %	8.8	10.8	14.5	2.1
Duration, weeks	10.9	8.7	6.4	47.1
Absolute Size, %	10.9	10.6	10.9	8.5

Sales filter: 1-week two-sided filter

	Raw]	Imputed			
Weights:	No	W	В		No	W	В	Offline
0	(1)	(2)	(3)		(4)	(5)	(6)	(7)
Posted Price								
Median Freq., %	14.0	16.7	19.3		7.2	9.3	16.3	4.7
Duration, weeks	6.6	5.5	4.7		13.4	10.2	5.6	20.8
Absolute Size, %	11.0	10.7	11.2					10.7
Regular Price								
Median Freq., %	8.8	10.8	14.5		6.3	8.0	13.5	2.1
Duration, weeks	10.9	8.7	6.4		15.5	12.1	6.9	47.1
Absolute Size, %	10.9	10.6	10.9					8.5

Sales filter: 1-week two-sided filter

Imputation: {2,2,.,,2}==>{2,2,2}, up to 4 weeks

Weighting by clicks improves measurement (imputation)

Composition Effect

		Posted Pr	ice	Η	Regular Price		
	Or	nline		On	Online		
	No	В	Offline	No	В	Offline	
	(1)	(2)	(3)	(4)	(5)	(6)	
Audio Players and Recorders	17.1	23.5	6.2	10.8	19.8	1.8	
Bedding	20.0	17.1	10.1	12.5	13.3	1.3	
Books	20.0	23.8	1.7	14.2	16.7	1.3	
Camera Accessories	7.4	16.4	4.7	4.9	12.4	2.0	
Cameras	17.6	34.9	5.2	15.6	30.3	2.7	
Camping, Backpacking, and Hiking	13.3	18.0	3.4	7.8	14.5	1.1	
Computer Software	12.1	23.8	2.8	7.7	19.1	2.0	
Cookware	13.2	17.7	4.8	7.7	10.6	0.7	
Costumes	10.8	13.2	7.2	6.1	7.3	0.9	
Cycling	15.8	16.5	3.6	10.3	12.5	1.7	
Doors and Windows	13.4	8.8	4.3	10.6	5.7	0.8	
Gardening	12.5	12.8	2.3	6.8	9.1	1.3	
Hair Care	14.3	22.4	5.2	9.7	14.7	1.7	
Household Climate Control	11.3	15.7	3.7	7.0	11.1	0.8	
Kitchen Appliances	13.4	13.2	5.7	9.3	10.6	0.9	
Musical String Instruments	1.9	2.1	2.4	0.7	1.6	1.5	
Oral Care	14.4	23.5	1.8	11.3	17.5	1.2	
Tableware	11.1	17.6	5.2	6.3	16.1	0.7	
Telephony	15.9	23.4	4.7	9.1	22.8	2.7	
Vacuums	15.2	32.1	7.1	11.6	25.4	2.0	
Vision Care	1.3	5.7	2.9	0.0	5.7	1.4	
Watches	12.2	11.8	5.7	7.9	9.0	1.0	

Product substitution is a channel of price adjustment (Nakamura and Steinsson 2012)

Cavallo, Neiman, and Rigobon (2014) scrape online data from Apple, IKEA, H&M, and Zara

Product substitution is a channel of price adjustment (Nakamura and Steinsson 2012)

Cavallo, Neiman, and Rigobon (2014) scrape online data from Apple, IKEA, H&M, and Zara

- 1. 77% of products in the U.S. sample have constant price
- 2. duration of life is short (15 weeks)
- 3. longer life duration ==> price changes are more likely

All					
	Products				
	Const.	Not			
	Price	Const.			
	(1)	(2)			
Share of goods, %	11.9	88.1			
Share of clicks, %	1.3	98.7			

Only 12% of products have constant price (unlike in CNR)

	А	11	Арр	arel,
	Proc	lucts	One	Seller
	Const.	Not	Const.	Not
	Price	Const.	Price	Const.
	(1)	(2)	(3)	(4)
Share of goods, %	11.9	88.1	31.0	69.0
Share of clicks, %	1.3	98.7	25.7	74.3

Only 12% of products have constant price (unlike in CNR)

The difference is due to sample composition

	А	.11	App	arel,	—excl. Jewelry		
	Proc	Products		Seller	and Watches		
	Const.	Not	Const.	Not	Const.	Not	
	Price	Const.	Price	Const.	Price	Const.	
	(1)	(2)	(3)	(4)	(5)	(6)	
Share of goods, %	11.9	88.1	31.0	69.0	42.4	57.6	
Share of clicks, %	1.3	98.7	25.7	74.3	30.8	69.2	

Only 12% of products have constant price (unlike in CNR)

The difference is due to sample composition

	A	.11	Арр	arel,	—excl. Jewelry		
	Proc	lucts	One	Seller	and Watches		
	Const.	Not	Const.	Not	Const.	Not	
	Price	Const.	Price	Const.	Price	Const.	
	(1)	(2)	(3)	(4)	(5)	(6)	
Share of goods, %	11.9	88.1	31.0	69.0	42.4	57.6	
Share of clicks, %	1.3	98.7	25.7	74.3	30.8	69.2	
Av. # of sellers	1.3	5.1	1.0	1.0	1.0	1.0	
Life duration, weeks	36.2	57.2	27.9	37.4	22.3	30.3	

Only 12% of products have constant price (unlike in CNR)

The difference is due to sample composition

Duration of life is shorter for apparel shorter duration ==> price changes are less likely (as in CNR) but the frequency is almost the same Are prices synchronized online?

Synchronization Rate, %

	For a Good across Sellers					
	Mean (1)	Std (2)	Med (3)	3m (4)		
No	10.2	18.6	0.0	/1 2		
W	10.2	19.2	0.0	43.2		
В	15.7	10.0	15.1	55.2		

Synchronization Rate, %

	For a	Good a	cross Se	ellers
		<u> </u>		-
	Mean	Std	Med	3m
	(1)	(2)	(3)	(4)
Posted				
No	10.2	18.6	0.0	41.3
W	10.6	19.2	0.0	43.2
В	15.7	10.0	15.1	55.2
Regular				
No	7.8	16.4	0.0	40.6
W	8.2	17.0	0.0	42.2
В	12.8	8.6	12.6	52.8

Posted price changes are slightly more synchronized

Synchronization Rate, %

	For a Good across Sellers					For a Seller across Goods			
	Mean (1)	Std (2)	Med (3)	3m (4)		Mean (5)	Std (6)	Med (7)	3m (8)
Posted									
No	10.2	18.6	0.0	41.3		17.2	27.4	1.6	45.7
W	10.6	19.2	0.0	43.2		17.6	28.3	1.2	47.6
В	15.7	10.0	15.1	55.2		22.5	11.6	24.9	66.7
Regular									
No	7.8	16.4	0.0	40.6		14.7	25.7	0.0	46.1
W	8.2	17.0	0.0	42.2		15.2	26.7	0.0	48.1
В	12.8	8.6	12.6	52.8		18.3	10.3	20.3	64.3

Posted price changes are slightly more synchronized

Synchronization across goods is higher, but hardly perfect within firms (unlike in models of Midrigan 2011, Alvarez and Lippi 2014)

Synchronization over Time for a Good across Sellers

Synchronization over Time for a Seller across Goods

Do micro factors play a role in price adjustment?

We run the following regressions:

$$f_i^{w} = \beta_1 \log S_i + \beta_2 \text{HHI}_i + \beta_3 \log Q_i + \beta_4 \overline{\log P_i} + \beta_5 \overline{\log P_i}^2 + \varepsilon_i$$

 f_i^{w} is click-weighted frequency, size, or sync. for good *i* S_i – number of sellers; HHI_i – Herfindahl index based on clicks, (0, 1] Q_i – total number of clicks $\overline{\log P_i}$ – median log price Category FE; SE clustered at narrow categories; obs. weighted by clicks

We run the following regressions:

$$f_{i}^{\mathsf{w}} = \beta_{1} \log S_{i} + \beta_{2} \mathsf{HHI}_{i} + \beta_{3} \log Q_{i} + \beta_{4} \overline{\log P}_{i} + \beta_{5} \overline{\log P}_{i}^{2} + \varepsilon_{i}$$

 f_i^w is click-weighted frequency, size, or sync. for good *i* S_i — number of sellers; HHI_i — Herfindahl index based on clicks, (0, 1]

 $\dot{Q_i}$ — total number of clicks

 $\overline{\log P_i}$ — median log price

Determinant	Freq.	Abs. Size	Sync.
	(1)	(2)	(3)
Log Number of Sellers	10.7***	-1.3^{*}	2.8***
	(0.6)	(0.7)	(0.6)

R^2	0.09	0.12	0.05
Ν	14,483	17,053	9,937

We run the following regressions:

$$f_{i}^{\mathsf{w}} = \beta_{1} \log S_{i} + \beta_{2} \mathsf{HHI}_{i} + \beta_{3} \log Q_{i} + \beta_{4} \overline{\log P}_{i} + \beta_{5} \overline{\log P}_{i}^{2} + \varepsilon_{i}$$

 f_i^w is click-weighted frequency, size, or sync. for good *i* S_i — number of sellers; HHI_i — Herfindahl index based on clicks, (0, 1]

 $\dot{Q_i}$ — total number of clicks

 $\overline{\log P_i}$ — median log price

Determinant	Freq.	Abs. Size	Sync.
	(1)	(2)	(3)
Log Number of Sellers	10.7***	-1.3^{*}	2.8***
	(0.6)	(0.7)	(0.6)
Concentration, HHI, (0,1]	24.9***	-6.6***	13.3***
	(2.8)	(1.5)	(2.9)

R^2	0.09	0.12	0.05
Ν	14,483	17,053	9,937

We run the following regressions:

$$f_{i}^{\mathsf{w}} = \beta_{1} \log S_{i} + \beta_{2} \mathsf{HHI}_{i} + \beta_{3} \log Q_{i} + \beta_{4} \overline{\log P}_{i} + \beta_{5} \overline{\log P}_{i}^{2} + \varepsilon_{i}$$

 f_i^w is click-weighted frequency, size, or sync. for good *i* S_i — number of sellers; HHI_i — Herfindahl index based on clicks, (0, 1]

 $\dot{Q_i}$ — total number of clicks

 $\overline{\log P_i}$ — median log price

Determinant	Freq.	Abs. Size	Sync.
	(1)	(2)	(3)
Log Number of Sellers	10.7***	-1.3^{*}	2.8***
	(0.6)	(0.7)	(0.6)
Concentration, HHI, (0, 1]	24.9***	-6.6***	13.3^{***}
	(2.8)	(1.5)	(2.9)
Log Total Clicks	-4.2***	0.3	-0.6*
	(0.3)	(0.3)	(0.4)

R^2	0.09	0.12	0.05
Ν	14,483	17,053	9,937

We run the following regressions:

$$f_i^{\mathsf{w}} = \beta_1 \log S_i + \beta_2 \mathrm{HHI}_i + \beta_3 \log Q_i + \beta_4 \overline{\log P}_i + \beta_5 \overline{\log P}_i^2 + \varepsilon_i$$

 f_i^w is click-weighted frequency, size, or sync. for good *i* S_i — number of sellers; HHI_i — Herfindahl index based on clicks, (0, 1]

 $\dot{Q_i}$ — total number of clicks

 $\overline{\log P_i}$ — median log price

Determinant	Freq.	Abs. Size	Sync.
	(1)	(2)	(3)
Log Number of Sellers	10.7***	-1.3^{*}	2.8***
	(0.6)	(0.7)	(0.6)
Concentration, HHI, (0,1]	24.9***	-6.6***	13.3^{***}
	(2.8)	(1.5)	(2.9)
Log Total Clicks	-4.2^{***}	0.3	-0.6^{*}
	(0.3)	(0.3)	(0.4)
Log Median Price	0.1	-9.2***	2.0***
	(0.7)	(0.7)	(0.6)
Log Median Price, sq.	-0.1	0.7***	-0.1^{*}
	(0.1)	(0.1)	(0.1)
R^2	0.09	0.12	0.05
N	14,483	17,053	9,937

Is there more price convergence online?

Price Dispersion: Importance

► In theory, should be small without menu & search costs

- ► Is tightly related to welfare
 - $MC = MR_1 = MR_2$ is violated
 - opportunity for store switching

Allows distinguishing between various micro and macro theories

- spatial vs. temporal
- dynamics since product introduction
- comovement with inflation

Price Dispersi	on, % oi	log-p.
----------------	----------	--------

The same order of magnitude as offline Kaplan and Menzio (2014): CV=19% in the Nielsen data Sheremirov (2014): $std(\log P) = 10 \log$ -p. in the IRI data

	CV	std(log P)	VI	IQR	Range	Gap
	$std(P)/\bar{P}$	stu(10g1)	$\bar{p} - p_1$	$p_{75\%} - p_{25\%}$	$p_{max} - p_1$	$p_2 - p_1$
	(1)	(2)	(3)	(4)	(5)	(6)
No	21.5	23.6	24.4	34.6	40.7	27.6
W	21.4	22.9	23.3	32.0	40.7	27.6
В	19.9	20.3	24.8	26.1	50.1	21.1

Price Dispersion, % or log-p.

The same order of magnitude as offline Kaplan and Menzio (2014): CV=19% in the Nielsen data Sheremirov (2014): $std(\log P) = 10 \log$ -p. in the IRI data

Less mass around the min. price

	CV	std(log D)	VI	IQR	Range	Gap
	std(P)/P	stu(10g1)	$\bar{p} - p_1$	$p_{75\%} - p_{25\%}$	$p_{max} - p_1$	$p_2 - p_1$
	(1)	(2)	(3)	(4)	(5)	(6)
		A	Actual pr	ices, P _{ist}		
No	21.5	23.6	24.4	34.6	40.7	27.6
W	21.4	22.9	23.3	32.0	40.7	27.6
В	19.9	20.3	24.8	26.1	50.1	21.1
		Prices net	of seller	fixed effects,	ε_{ist}	
No		21.2	18.3	31.2	36.8	25.1
W		20.7	17.5	28.9	36.8	25.1
В		17.5	18.6	22.5	43.8	18.8

Price Dispersion, % or log-p.

The same order of magnitude as offline

Kaplan and Menzio (2014): CV=19% in the Nielsen data Sheremirov (2014): $std(\log P) = 10 \log$ -p. in the IRI data

Less mass around the min. price

Seller FE control for delivery, return, customer experience, etc. $\log P_{ist} = \alpha_i + \gamma_s + \varepsilon_{ist}$

Price Dispersion since Product Introduction

Spatial vs Temporal Price Dispersion

Do online retailers use dynamic pricing?

Dynamic Pricing

Warner and Barsky's (1995): firms permanently reset prices during high demand episodes

Uneven price staggering may affect the timing of monetary policy —similar to Olivei and Tenreyro's (2007) argument

Dynamic Pricing

Warner and Barsky's (1995): firms permanently reset prices during high demand episodes

Uneven price staggering may affect the timing of monetary policy —similar to Olivei and Tenreyro's (2007) argument

- We find confirmation for WB at low frequencies (around sales seasons: Thanksgiving or Christmas)
 - clicks \uparrow , prices permanently \downarrow

Dynamic Pricing

Warner and Barsky's (1995): firms permanently reset prices during high demand episodes

Uneven price staggering may affect the timing of monetary policy —similar to Olivei and Tenreyro's (2007) argument

- We find confirmation for WB at low frequencies (around sales seasons: Thanksgiving or Christmas)
 - ▶ clicks \uparrow , prices permanently \downarrow
- No confirmation at higher frequencies (days of the week or month)
 - Consumers shop online at the beginning of the week or month
 - No evidence firms adjust their prices more often

Prices and Clicks around Sales Seasons

A Product in "Headphones" Category

Prices and Clicks around Sales Seasons

A Product in "Headphones" Category

Prices and Clicks around Sales Seasons

A Product in "Headphones" Category

Prices and Clicks by Day of the Week

		Log Deviation from Weekly Median log points	
	Click Share,	Total	
	percent	Clicks	
	(1)	(2)	
Monday	16.2	10.0	
Tuesday	15.5	6.4	
Wednesday	14.8	3.8	
Thursday	14.3	0.0	
Friday	13.3	-6.6	
Saturday	12.1	-16.0	
Sunday	13.8	-4.4	

Prices and Clicks by Day of the Week

		Lo	Log Deviation from		
		Weekly Median, log points			
	Click Share,	Total	Mean	Weighted	
	percent	Clicks	Price	Mean Price	
	(1)	(2)	(3)	(4)	
Monday	16.2	10.0	-0.1	0.0	
Tuesday	15.5	6.4	0.2	0.0	
Wednesday	14.8	3.8	0.5	0.0	
Thursday	14.3	0.0	1.4	0.1	
Friday	13.3	-6.6	2.0	2.8	
Saturday	12.1	-16.0	-3.0	-0.8	
Sunday	13.8	-4.4	-5.4	-1.9	

Prices and Clicks by Day of the Month

Prices and Clicks by Day of the Month

Concluding Remarks

SUMMARY:

- Online prices are more flexible than offline prices
- Still, there are significant frictions in online markets
- Data on quantity margin improves measurement

IMPLICATIONS:

- Price stickiness is unlikely to disappear due to e-commerce
- Online prices have special effects on aggregate price and inflation

FUTURE RESEARCH:

- ► Need for alternative mechanisms that generate price stickiness
- Sellers with online and offline presence
- Data on inventories and costs