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Agricultural Commodity Price Dynamics: 

Evidence from BVAR Models 
 

Olga Bondarenko 

 

Abstract 

Agricultural commodity markets have experienced bouts of significant volatility in recent years, 

drawing the attention of policymakers all over the world. This paper studies the dynamics of wheat 

and corn prices since 1999 through the lens of standard BVAR models in the spirit of Kilian (2009) 

and Kilian and Murphy (2014). I use monthly revisions of the WASDE supply projections to 

overcome the problem of limited availability of high-frequency data and develop an indicator of 

aggregate demand for grains, following Baumeister et al. (2020). The estimated elasticities are 

generally consistent with theory and earlier studies and produce reasonable historical 

decompositions. Models are helpful in forecasting exercises, including conditional forecasts and 

alternative scenarios while they perform no better than the random walk in short-term 

unconditional forecasting. 

JEL Classification Codes: C32, C51, Q11. 

Keywords: commodity prices, corn, wheat, BVAR models, demand elasticity, supply elasticity, 

historical decomposition, USDA supply forecasts, WASDE 
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1. Introduction 

International corn and wheat markets got a lot of attention as russia’s full-scale invasion of Ukraine 

broke out in 2022. Active warfare and rocket shelling in the proximity of ports limited Ukraine’s 

export capacity, while sanctions created financing and insurance problems for russia. Grain prices 

increased substantially on impact, with wheat reaching 500 USD/MT and corn settling above 340 

USD/MT for about a month – more than 1.5 times the long-term average. These developments 

were unsurprising, given that the two countries together accounted for almost 30% of the world’s 

wheat export and about 17% of corn in recent years. 

It was not the first time, though, when grain prices rose well beyond their long-term averages. 

Earlier literature focused on 2006–2008 and 2010–2011 price spikes, proposing competing 

explanations from weather to biofuel mandates to export restrictions. The truth is likely to lie 

somewhere in the middle, meaning that all these factors have probably contributed to price 

increases, at least to some extent. However, attempts to quantify them consistently are relatively 

scarce, especially at infra-annual frequencies. 

Thus, this paper tries to fill the void by developing structural BVAR models for corn and wheat 

markets, using rather traditional approaches of Kilian (2009) and Kilian and Murphy (2014) for the 

oil market. Tailoring these methods to the agricultural setup appears to be a nontrivial task. First, 

a built-in assumption that production and consumption are equal each period is violated in the 

case of grains, where output is highly seasonal. Second, reliable high-frequency data on monthly 

grain production and stocks are virtually absent. To overcome both issues, this paper uses supply 

projections from WASDE reports published by the USDA. Although the values are reported on a 

marketing-year basis, these reports are updated monthly, closely followed, and considered 

trustworthy by market participants. Nevertheless, the data requires several adjustments to reflect 

consistently the USDA revisions across major exporting and importing countries. Since common 

indicators of aggregate demand may be less indicative of the price pressures associated with a 

growing economy and income, this paper also develops an alternative demand factor, as in 

Baumeister et al. (2020). 

Structural shocks are identified with sign restrictions, the justification of which comes from 

competitive equilibrium models with and without storage. Although indirect estimation of the 

structural matrix does not allow for setting priors, posterior distributions of parameters are 

generally consistent with theory and earlier studies. The median elasticity of supply is about 0.07 

to 0.10, with responsiveness to price stemming from the import component, while beginning stocks 

and production are largely predetermined. Demand is also inelastic, even if the magnitude of 

elasticity at 0.5–0.8 is closer to the upper bound of the range of estimates from the literature. 

The models generally confirm the earlier readings of price increases in 2006–2008 and 2010–

2011. Aggregate demand was more important for corn rather than wheat, given its broader feed 

and industrial use, including biofuels. Instead, the wheat price was primarily influenced by adverse 
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supply shocks. While the accumulation of inventories drove corn prices upward in 2006–2008 

amid expectations of sustained strong demand, their contribution was minor in 2010–2011 for both 

corn and wheat. When it comes to russia’s invasion of Ukraine, a negative supply shock, triggered 

by sea blockade and export restrictions of alternative suppliers, pushed prices up. Stockpiling, 

involuntary to some extent (for example, for Ukraine), added to the price pressures while slowing 

global economic growth was counterbalancing it. 

The BVAR models show desirable properties, and it makes them suitable for several forecasting 

exercises, including conditional forecasts and alternative scenarios. However, the framework 

presented in the paper is no better than the random walk in making unconditional forecasts of 

future developments. 

The rest of the paper is organized as follows. Section 2 explains the theoretical background, which 

is vital for systematically building the model. Data and its transformations are described in Section 

3. Section 4 shows the estimation methodology, and Section 5 its results. Robustness checks are 

presented in Section 6. Section 7 concludes. 

2. Theoretical Models 

A seminal paper by Kilian (2009), with its intuitive supply-demand framework, serves as a basis 

for numerous commodity price VAR models.1 It uses three variables: (i) the percent change in 

global crude oil production; (ii) a global economic activity index derived from bulk dry cargo freight 

rates; and (iii) the real price of oil. The dynamics of these three variables is modelled jointly as an 

autoregressive process, 

𝐴0𝑦𝑡 = 𝛼 +∑𝐴1𝑦𝑡−𝑖

24

𝑖=1

+ 𝜀𝑡 , 

where 𝑦𝑡 = [Δ𝑝𝑟𝑜𝑑𝑡 𝑟𝑒𝑎𝑡 𝑟𝑝𝑜𝑡]′ and 𝜀𝑡 is the vector of serially and mutually uncorrelated 

structural shocks. These structural shocks are identified from reduced-form errors 𝜖𝑡 with 

Cholesky decomposition as in 

𝜖𝑡 = [

𝜖1,𝑡
𝜖2,𝑡
𝜖3,𝑡
] = 𝐴0

−1𝜀𝑡 = [
𝑎11 0 0
𝑎21 𝑎22 0
𝑎31 𝑎32 𝑎33

]

[
 
 
 𝜀1,𝑡

𝑜𝑖𝑙 𝑠𝑢𝑝𝑝𝑙𝑦 𝑠ℎ𝑜𝑐𝑘

𝜀2,𝑡
𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 𝑠ℎ𝑜𝑐𝑘

𝜀3,𝑡
𝑜𝑖𝑙−𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑑𝑒𝑚𝑎𝑛𝑑 𝑠ℎ𝑜𝑐𝑘

]
 
 
 
. 

Oil supply shocks 𝜀1,𝑡 reflect unpredictable changes to the current production of crude oil, 

aggregate demand shocks 𝜀2,𝑡 stand for innovations to global real economic activity that cannot 

be explained by oil supply shocks, and oil-specific demand shocks 𝜀3,𝑡 represent shifts in the 

                                                 
1 See Kilian and Zhou (2020) for a comprehensive survey of papers on the oil market. 
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precautionary demand for oil. Thus, any shortfalls of supply versus demand expected by market 

participants fall into 𝜀3,𝑡 instead of being modelled explicitly. 

The framework proposed by Kilian (2009) is simple and elegant, but it cannot be applied to grain 

markets straight away. Though the paper does not state it explicitly, this model is, in essence, a 

VAR representation of the simplest competitive price equilibrium model. Its setup typically consists 

of two behavioral equations of supply and demand and an identity linking them: 

𝑄𝑡
𝑠 = 𝑞(𝑃𝑡 , 𝑃𝑡−1, … ) 

𝑃𝑡 = 𝛽0 + 𝛽1𝑄𝑡
𝑑 + 𝛽2𝐼𝑛𝑐𝑡 

𝑄𝑡
𝑠 = 𝑄𝑡

𝑑 

where 𝑄𝑡
𝑠 and 𝑄𝑡

𝑑 are quantities demanded and supplied, 𝐼𝑛𝑐𝑡 stands for income, and 𝑃𝑡 is price. 

Whenever 𝑄𝑡
𝑠 is treated as production only, it implies that the amount of good produced is also 

consumed during the same period. 

If such an approximation could have loosely fitted for the oil market2, it becomes inapplicable when 

grain markets are considered. Unlike crude oil, which is extracted continuously throughout the 

year, grain production is discontinuous. Harvesting lasts, in general, two to four months, so stocks 

are necessary to match relatively smooth consumption with seasonal production (Figure 1A in 

Appendix). In addition, international trade in grains also exhibit a seasonal pattern (Figure 2A in 

Appendix). 

Thus, for each period 𝑡, the USDA defines the total supply of grains 𝑄𝑡
𝑠, which is equal to the total 

distribution 𝑄𝑡
𝑑, as follows: 

𝑄𝑡
𝑠 = 𝐼𝑡−1 + 𝑃𝑟𝑜𝑑𝑡 +𝑀𝑡 = 𝑋𝑡 + 𝐶𝑜𝑛𝑠𝑡 + 𝐼𝑡 = 𝑄𝑡

𝑑 

where 𝑃𝑟𝑜𝑑𝑡 and 𝐶𝑜𝑛𝑠𝑡 are production and consumption in the current marketing year, 𝑀𝑡 and 𝑋𝑡 

are aggregate imports and exports, 𝐼𝑡−1 and 𝐼𝑡 are beginning and ending stocks. During the latest 

five marketing years (2017/2018 to 2021/2022), on average, carryover stocks and imports made 

up about 30% to 39% of the total supply of corn and wheat, respectively. Consequently, a 

consistent model of grain markets should include all of its components. In turn, it would ensure 

that the equality 𝑄𝑡
𝑠 = 𝑄𝑡

𝑑 holds. 

2.1. Temporal Dimension 

When a commodity is storable, it creates opportunities for inter-temporal arbitrage. While 

production is predetermined by past sowing decisions, fertilizer inputs, and weather events, 

                                                 
2 Admittedly, this assumption is relaxed later in Kilian and Murphy (2014). 
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carryover stocks can augment total supply from one marketing year to the next. By correctly 

anticipating future shortfalls of supply versus demand, market participants provide sufficient 

inventories and, hence, moderate price fluctuations. If they are wrong, however, a sequence of 

unfavorable weather events can result in a significant drawdown of stocks and, consequently, 

large price spikes. For this reason, researchers sometimes treat intertemporal arbitrage as 

speculation and demand for inventories as speculative demand (Kilian and Murphy, 2014). 

In agriculture, the problem of optimal storage dates back to Gustafson (1958), but the first attempt 

to confront a storage model with the data was done by Deaton and Laroque (1992). Since the 

problem has no simple analytic solution, the paper uses a numerical approximation to solve for 

equilibrium price, and simulates the distribution of prices, given i.i.d. shocks to harvest. Deaton 

and Laroque (1992) were able to replicate some features of the observed price dynamics but not 

autocorrelation. As a result, a strand of literature has emerged3 that focuses on bringing the 

competitive storage model closer to the data. 

While these models are inherently more complex than the VAR framework would allow, they offer 

an intuition on problem formulation. First, demand consists of two parts, namely consumption 

demand, and demand from profit-maximizing, risk-neutral stockholders. Second, stockholders try 

to earn positive returns from storage by buying cheap and selling at higher prices in the next 

period, which implies an inverse relationship between price and inventories. Third, the availability 

of storage always dampens the effect of positive output shocks, but not negative ones, which can 

cause stock-outs and, thus, positive price spikes (Miao et al., 2011). 

In line with Deaton and Laroque (1992), supply that contains inventories from the previous period 

must equal demand, including demand for inventories to hold until the next period, so that, 

𝑃𝑟𝑜𝑑𝑡 + (1 − 𝛿)𝐼𝑡−1 − 𝐼𝑡 = 𝑑(𝑃𝑡) 

where 𝛿 is a depreciation rate, and 𝑑(𝑃𝑡) is a standard continuous and strictly decreasing function 

of price. Abstracting from depreciation, this identity is essentially the USDA balance sheet 

equation if one assumes exports and imports as parts of demand and supply, respectively, so that 

𝑄𝑡
𝑝𝑠
= 𝑃𝑟𝑜𝑑𝑡 +𝑀𝑡 and 𝑄𝑡

𝑝𝑑
= 𝑋𝑡 + 𝐶𝑜𝑛𝑠𝑡. Then,  

𝑃𝑡 = 𝑑
−1(𝑄𝑡

𝑝𝑠
+ 𝐼𝑡−1 − 𝐼𝑡) 

If 𝑑(𝑃𝑡) is an isoelastic function, then model variables are usually defined in logarithmic form. Thus, 

instead of substituting 𝑄𝑡
𝑝𝑠
+ 𝐼𝑡−1 − 𝐼𝑡 into a linear equation directly, I transform the variables: 

                                                 
3 Deaton and Laroque (1996), Cafiero et al. (2011), Miao et al. (2011), and Gouel and Legrand (2017) to 
name a few. 
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ln(𝑄𝑡
𝑝𝑑
) = ln(𝑄𝑡

𝑝𝑠
+ 𝐼𝑡−1 − 𝐼𝑡) = ln (𝑄𝑡

𝑝𝑠
(1 −

Δ𝐼𝑡

𝑄𝑡
𝑝𝑠)) = ln𝑄𝑡

𝑝𝑠
+ ln (1 −

Δ𝐼𝑡

𝑄𝑡
𝑝𝑠) = ln𝑄𝑡

𝑝𝑠
−
Δ𝐼𝑡

𝑄𝑡
𝑝𝑠 

Here, Δ𝐼𝑡 𝑄𝑡
𝑝𝑠⁄  is sufficiently small to apply Taylor approximation around zero and simplify ln(1 − 𝑥) 

to −𝑥. This ratio is close to a popular concept of the stock-to-use ratio, which shows a relative 

grain market tightness (see, for example, analysis by Glauber (2023)). The demand equation then 

reduces to 

𝑃𝑡 = 𝛽0 + 𝛽1𝑄𝑡
𝑝𝑠
+ 𝛽1 (−

Δ𝐼𝑡

𝑄𝑡
𝑝𝑠) + 𝛽2𝐼𝑛𝑐𝑡 

To close the model, one should specify an equation for the quasi-stock-to-use ratio. From earlier 

literature, inventories and stock-to-use ratios are inversely related to price (Bobenrieth et al., 

2013). Since 𝐼𝑡−1 is treated as predetermined and 𝑄𝑡
𝑝𝑠

 appears in the denominator4, the ratio is 

likely to have the same relationship to price. To avoid the presence of a contemporaneous variable 

in the ratio, researchers tend to substitute it with the previous-period value, e.g. Baumeister and 

Hamilton (2019). When production is rather smooth, as in the case of oil, it should work well. 

However, in agriculture, the differences across marketing years can be substantial so that the ratio 

of stocks to previous MY supply would not reflect the actual market tightness. Thus, the quasi-

stock-to-use ratio is expected to depend also on 𝑄𝑡
𝑝𝑠

, as in 

Δ𝐼𝑡

𝑄𝑡
𝑝𝑠 = 𝑓(𝑄𝑡

𝑝𝑠
, 𝑃𝑡 , … ) 

There is an alternative way to define the inventory variable simply as a difference between current 

and previous inventories in levels, as Kilian and Murphy (2014) and others5 do. Nevertheless, 

such an approach tends to worsen model properties and forecasts. 

3. Data 

Unlike standard macroeconomic models, for which a set of variables is usually well defined, 

models of commodity markets employ different indicators to decompose shocks and forecast 

prices. Kilian (2009) and Kilian and Murphy (2014), as well as other papers that adopt a similar 

approach, use global crude oil production, the index of real economic activity, global crude oil 

inventories, and the real price of oil. Economou et al. (2017) go one step further by manually 

disentangling exogenous and endogenous supply shocks for all OPEC producers, the U.S., China, 

russia, Canada, Mexico, the North Sea, and the rest of the world (as an aggregate). Baumeister 

and Hamilton (2019) use an extended version of the OECD’s index of monthly industrial production 

                                                 
4 Quantity supplied is directly related to price. 
5 For instance, Baumeister and Kilian (2011), Economou et al. (2017). 
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as an indicator of global demand. Baumeister et al. (2020) offer an alternative measure of global 

economic activity, which appears superior to the industrial production index in forecasting oil 

consumption. Finally, Delle Chiaie, Ferrara, and Giannone (2017) state that the common factor, 

extracted from the panel of 52 internationally traded commodities, is indicative of global demand 

pressures and explains a large share of commodity price fluctuations.  

However, in either case, authors rely on variables that are available monthly or at higher 

frequencies. Instead, data availability creates substantial problems for modeling agricultural 

markets at infra-annual frequencies. The USDA Production, Supply, and Distribution (PSD) 

Dataset, a credible source of international grain supply and demand data, reports the data only 

on a local marketing-year (MY) basis. It is worth noting that USDA may specify MY differently than 

producing countries (Vogel and Bange, 1999), so this paper uses solely USDA’s definitions. 

Authors employed different strategies to overcome this obstacle. Wang et al. (2014) rely primarily 

on oil market data and the Kilian (2009) setup, assuming that biofuels connect oil and agriculture 

markets. McPhail et al. (2012) add ethanol into the system explicitly. Both papers show that 

fluctuations in oil markets could have caused 15%–17% of forecast errors at the 12-month horizon 

during 2000–2012 (or even less during the first part of the sample). Qui et al. (2012) use U.S. corn 

supplies from the USDA’s Economic Research Service along with the data on fuels. However, 

these supplies are provided on a quarterly basis, so authors transform them into monthly with a 

cubic spline. Whether this interpolation reflects actual data fluctuations, taking into account the 

seasonal nature of agricultural production, is an open question, but it explains about 5% of forecast 

error variance in 12 to 60 months. Instead, Janzen et al. (2014) rely on financial market indicators 

to identify structural shocks, namely the spread between the fifth deferred futures contract price 

and the nearby futures prices (reflecting a precautionary demand shock). A supply shock in that 

model is a residual variation in the agriculture commodity price that remains unexplained by the 

other three shocks. It turns out to be a key driving force behind wheat price fluctuations. 

An alternative approach to capture a supply shock is to use changes in projections published in 

the World Agricultural Supply and Demand Estimates (WASDE). Empirical research (Arnade et 

al., 2021, Milacek and Brorsen, 2017, Adjemian, 2012 etc.) corroborates an assumption that 

WASDE reports contain significant nonpublic information that influences prices. It also suggests 

that the market adjusts its forecast of grain supply-demand balance according to USDA forecasts. 

Thus, Adjemian and Smith (2012) use monthly WASDE forecasts of crop production in the U.S. 

from May to January (excluding December; seven observations per year) to estimate the short-

run demand flexibility for corn and soybeans. Although researchers in this topic concentrate 

predominantly on estimates for the U.S., Isengildina-Massa et al. (2008) show that the 

international situation and outlook have a measurable impact on the corn and soybean futures 

return variance. 

WASDE forecast data seems to have several advantages over alternatives. First, the USDA 

publishes the report monthly, so one can easily construct a monthly time series, while the PSD 
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Database contains only annual values. Second, it provides consistent estimates of production, 

consumption, trade, and stocks that fit the structure of the outlined model well. Third, market 

participants follow the WASDE report closely, and a series of forecast revisions should mimic the 

information set that they rely on when they make pricing decisions. Therefore, this paper uses 

revisions of WASDE projections as a primary tool to capture supply shocks. 

3.1. WASDE Supply Estimates 

A standard WASDE report includes an analytical section and a set of world and U.S. supply and 

use tables for several commodities, including wheat and corn. The world supply and use table 

comprises three parts, corresponding to three marketing years, of which two are tagged with “Est.” 

and “Proj.” labels. These two labels might be misleading, as some people might treat the data for 

respective years as estimates for the current MY and projections for the next MY. However, it 

might not be the case depending on crop, country, and month. 

For many crops, including corn and wheat, the marketing year differs from the calendar year and 

varies by country or region, as it normally starts with the first month of harvesting. Commonly, 

seasons in the Southern Hemisphere are a mirror image of those in the Northern, and harvesting 

in Ukraine occurs at about the same time as sowing in Argentina (Figures 3A, 4A, and 5A in 

Appendix). Although Argentina will collect its crops far later, both October Ukrainian corn and May 

Argentinian corn correspond to the same MY and, thus, fall into the same world total. 

However, such an approach aggregates estimates constructed with unbalanced information sets. 

For example, USDA grounds its projections of U.S. corn production in May6, June, and July on 

NASS estimates of acreage and trend yields since actual ones are unknown before harvest. At 

the same time, NASS estimates of U.S. winter wheat production, which instead rely on actual 

information from the fields, become available already in May. Even though Vogel and Bange 

(1999) do not disclose what methods and when Foreign Agricultural Service (FAS) uses for the 

foreign crop estimates, common sense suggests that methods and timing should be similar for 

analogous stages of plant growth in the U.S. and other countries. 

It has several important implications for modeling. First, USDA turns out to reveal mainly current-

MY estimates for some countries while both next-MY projections and current-MY estimates for 

others. Assume that in April, weather event damages winter wheat crops in Ukraine, which should 

be collected in July (already in the next MY). The market is likely to react to the event by adjusting 

the price (e.g., Guillaume et al., 2019), but the time series of WASDE forecasts will remain 

unchanged since the next-MY figures for Ukraine are first published only in May. By contrast, if a 

weather event happens in Argentina in September, the time series will capture it as a revision of 

WASDE projections. 

                                                 
6 USDA starts a new forecasting cycle each May. 
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Second, when incoming information for the next MY from countries that collect harvest in the 

summer months is not incorporated, the production series becomes increasingly less responsive 

to price. Recall that it takes time to grow crops, and current output results from past decisions 

(area, fertilizers) and random events (weather, pests). Farmers in Ukraine and other countries can 

barely adjust their production in May7, and their elasticity of supply is close to zero. Conversely, 

farmers in the Southern Hemisphere prepare for sowing so the market price can influence their 

decisions. Still, crops will be sown in about half a year, and the total elasticity of supply will decline 

from some positive value at the beginning of the year to zero. Essentially, this elasticity might 

exhibit seasonality when estimated on raw WASDE report data. In addition, revisions in raw data 

are different; they are exogenous for countries with approaching harvest and endogenous for 

others. 

Taking into account the structure of the model, which treats marketing years separately8, this 

paper distinguishes between current-MY and next-MY revisions of WASDE forecasts. In each 

specific month, the time series in levels receives the value from either “Est.” or “Proj.” parts of the 

table, depending on the current MY in a country.9 Then it is transformed into revisions by taking 

the first difference of logarithms. Although formal tests do not find seasonality in the resulting 

series, one can notice large spikes associated with changes in MY (Figure 1). For instance, the 

new 2021/2022 MY for wheat in the U.S. starts in June 2021, and if the current harvest differs 

significantly from the previous one, it will produce a spike in June. Still, projections for 2021/2022 

become available from WASDE in May 2021, so the difference between current and previous 

years10 can be substituted by the difference between estimates for 2021/2022 released in May 

and June 2021. The adjusted series no longer exhibits large spikes. 

Thorough correction of the supply series for differences in marketing years requires matching 

revisions with individual countries’ crop calendars. Since global aggregates include countries with 

different seasonal patterns, as explained above in the example with Ukraine and Argentina, it is 

virtually impossible to apply all these transformations to totals directly. Nonetheless, it still can be 

done for countries and regions that regularly appear in WASDE reports (Table 1A in Appendix). 

The set comprises major exporters and importers that together represent, on average, 90% of the 

global production of wheat and 88% of that of corn. To construct 𝑄𝑀𝑌,𝑡
𝑠  and 𝑄𝑀𝑌,𝑡

𝑝𝑠
, I collected 

separate production, inventory, and import estimates from the WASDE reports, adjusted them to 

include only current MY values, and then aggregated them into totals. 

                                                 
7 If the country produces not only winter wheat but also some meaningful quantities of spring wheat, as do 
the U.S. or russia, unfortunately, it might still be captured in the adjusted series to the extent that the 
WASDE data-generating process lags actual field progress. 
8 Next marketing year comes through the expectations channel. 
9 Under USDA definitions. 
10 Here, 2021/2022 and 2020/2021. The new series, constructed in the previous step, would contain 
2020/2021 value in May and 2021/2022 in June. 
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a) total supply of corn 

 

b) total supply of wheat 

Figure 1. Month-over-Month Changes in WASDE Forecasts 

The quasi-stock-to-use ratio also uses data from WASDE reports. It is constructed by dividing the 

change in ending inventories from the previous MY (Δ𝐼𝑀𝑌,𝑡 = 𝐼𝑀𝑌,𝑡 − 𝐼𝑀𝑌−1,𝑡) by the combined value 

of production and imports in the current MY. Given that the marketing year is not the period 𝑡, 

revisions to the series take the form 
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𝑝𝑠 =

Δ𝐼𝑀𝑌,𝑡

𝑄𝑀𝑌,𝑡
𝑝𝑠 −
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It shows a percentage point change in the ratio from one WASDE report to the next that occurs 

mainly due to variations in the estimates of current-year ending stocks and supply.11 Countries in 

the sample hold, on average, 89% of global ending stocks of wheat and 92% of those of corn. 

3.2. Consumption and Aggregate Demand 

When an aggregate demand indicator is included in a VAR model, it might be perceived as a 

consumption proxy. If the model behind is a competitive equilibrium model, this perception turns 

out to be wrong. As the model section shows, consumption is inferred from the identity instead of 

entering the model directly. The demand equation, however, can take into account demand 

shifters – factors that influence the level of the curve as opposed to movements along the curve. 

Models of the oil market commonly use industrial production (Baumeister and Hamilton, 2019) 

and the index of freight rates (Kilian, 2009) as an indicator of global economic activity that shifts 

oil demand. Instead, Baumeister et al. (2020) develop a broader measure that reflects some 

elements of derived demand, such as from the transportation sector. 

In agriculture, real income is often considered one of the most important drivers. When consumers 

earn more, they tend to increase their spending on grains along with adjusting their diets to include 

more meat, especially in developing countries (Janzen et al., 2014). However, measuring income 

on a global scale directly can be challenging, as not all countries collect or provide detailed data 

on individual income. GDP per capita, which shows the average income of a country’s citizens, is 

usually a low-frequency indicator unsuitable for a monthly model. Thus, I construct an alternative 

proxy in this paper to reflect shifters of grain demand. 

Guided by the principles stated in Baumeister et al. (2020)12, I compile the set of seven variables 

that correspond to three broad categories: real economic activity, commodity prices, and financial 

indicators. The number of variables and categories is lower here, given issues with data availability 

and, in some cases, appropriateness. For example, the weather is a supply rather than a demand 

factor for grains. Expectations and uncertainty measures are also discarded because a shock to 

an expectation is an inherent part of inventory demand. 

The economic activity block consists of three indicators. The OECD consumer confidence index 

reveals households’ sentiment towards consumption spending, depending on their views of the 

past and future financial situation. The Conference Board Leading Economic Index shows 

common turning points in economic data so it can contribute towards gauging changes in income. 

The OECD+6 industrial production index, which is now maintained by C. Baumeister, is included 

as a measure of both global economic activity and derived demand for grains from the industrial 

                                                 
11 Previous-year ending stocks, i.e. current-year beginning stocks, can also be revised, but it happens 
rarely. 
12 Data should span multiple dimensions; variables should have economic reasoning; coverage in time and 
space should be the broadest available; the number of variables should be reasonable. 
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sector, including ethanol. In the U.S., ethanol’s share of total use was, on average, 43% in the 

latest five years. 

Ethanol production is also a reason to include oil rather than copper as one of the commodity price 

indicators. IER’s (2007) paper estimates the maximum bidding price for corn and links it to the 

price of crude oil and dried distillers grains with solubles (DDGS) – a by-product that contains 

proteins and is used as livestock feed. The nominal price of Brent is deflated by the U.S. consumer 

price index. 

Feed use of grains – about 64% for corn and 19% for wheat – links it to the meat sector. Although 

having the number of animals (cattle, hogs, and poultry) would be superior to any other approach, 

this data is rarely available at sufficient precision and frequency. Thus, the FAO real meat price 

index, which is probably the most timely high-frequency indicator for the sector, is used instead. It 

covers two poultry, three bovine, three pig, and one ovine meat product, 28 quotations in total. 

As commodities are often priced and traded internationally in the U.S. dollar, fluctuations in its 

exchange rate can have a notable impact on prices in local currencies, affordability of 

commodities, and, hence, demand. The real trade-weighted U.S. dollar index from the Federal 

Reserve is chosen as the broadest measure of these developments, as it contains the currencies 

of 26 economies. In addition to the exchange rate, the financial block includes the MSCI world 

stock index to reflect the potential influence of higher (or lower) wealth on current household 

spending, especially in advanced economies. 

Figure 2. Alternative Aggregate Demand Series, % y-o-y 

The aggregate demand factor for grains is estimated as the first principal component from a 

balanced panel of these seven indicators. It explains about 43% of the variation in the series and 

exhibits year-on-year dynamics comparable to that of other economic activity gauges exploited in 

oil literature (Figure 2). 
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3.3. Prices 

Although traded commodities, including wheat and corn, are quite similar in their characteristics, 

they still feature some degree of differentiation for class and grade. This paper uses U.S. Wheat 

No. 1 Hard Red Winter and U.S. Maize No.2 Yellow from the IMF Primary Commodity Prices. The 

series are monthly averages of daily quotes in nominal U.S. dollars, deflated next by the U.S. 

consumer price index.  

4. Estimation 

Agricultural models have been mostly estimated with annual data, given the limited availability of 

high-frequency data, so theoretical models usually assume 𝑀𝑌 = 𝑡. This relationship does not 

hold for monthly models, 𝑀𝑌 ≠ 𝑡, and 𝑡 stands for the month, in which projections are released. 

Thus, for every month 𝑡, the balance sheet takes the form of 

𝐼𝑀𝑌−1,𝑡 + 𝑃𝑟𝑜𝑑𝑀𝑌,𝑡 +𝑀𝑀𝑌,𝑡 = 𝐶𝑜𝑛𝑠𝑀𝑌,𝑡 + 𝐼𝑀𝑌,𝑡 + 𝑋𝑀𝑌,𝑡 

Importantly, 𝐼𝑀𝑌−1,𝑡 ≠ 𝐼𝑀𝑌,𝑡−1. Here, 𝐼𝑀𝑌−1,𝑡 is usually constant, with some revisions possible for 

statistical rather than economic reasons. Instead, 𝐼𝑀𝑌,𝑡 is a choice variable, and Δ𝐼𝑀𝑌,𝑡, which 

enters the quasi-stock-to-use ratio, is  

Δ𝐼𝑀𝑌,𝑡 = 𝐼𝑀𝑌,𝑡 − 𝐼𝑀𝑌−1,𝑡 

The proposed VAR models are specified in revisions, where revision stands for a change in the 

series from one WASDE report to the next, as in 

Δ ln𝑄𝑀𝑌,𝑡
𝑠 = ln𝑄𝑀𝑌,𝑡

𝑠 − ln𝑄𝑀𝑌,𝑡−1
𝑠  

This equality holds for all 𝑡 owing to the adjustments performed during the data preparation stage. 

The estimation sample spans from January 1999 to December 2019, as Lenza and Primiceri 

(2022) show that dropping observations after 2020 can be acceptable for estimating the structural 

parameters. The full sample has been extended beyond 2019 to track and analyze the latest 

developments.  

The models are estimated in the BEAR Toolbox. The values of the hyperparameters are similar 

to those in the Baumeister and Hamilton (2019) paper: 𝜆1 = 10^9, 𝜆2 = 1, 𝜆3 = 1, and 𝜆4 = 100. 

Although these values differ somewhat from those used in the macroeconomic literature (see, for 

example, Canova, 2007), they tend to improve slightly the short-term forecast performance of the 

model. 
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4.1. Three-Variable VAR Model 

Now consider a structural VAR model with two lags of the form 

𝐴0𝑥𝑡 = 𝐴𝑐 +∑𝐴𝑖𝑥𝑡−𝑖

𝑇

𝑖=1

+ 𝐴𝐷𝐷𝑡 + 𝜀𝑡 

with dummies 𝐷𝑡 to correct for outliers and vector 𝑥𝑡 = [Δ ln𝑄𝑡
𝑠 Δ ln 𝐼𝑛𝑐𝑡 Δ ln𝑃𝑡]′ of dependent 

variables, where the first element is the total grain supply (𝑄𝑡
𝑠 = 𝐼𝑡−1 + 𝑃𝑟𝑜𝑑𝑡 +𝑀𝑡), the second is 

a measure of real aggregate demand, and the third captures the real price of grains. These 

variables help identify shocks similar to the ones in the original Kilian (2009) paper. It is worth 

noting, however, that grain supply shocks 𝜀1,𝑡 would show only a joint effect of changes to 

estimated production, imports, and beginning stocks13 in the current marketing year. 

The model offers an intuitive interpretation of parameters of 𝐴0. For instance, 𝛼𝑝𝑞 is own-price 

flexibility, keeping other factors constant. Since substitutes and complements to grains are absent 

from the model, it is safe to assume that the reciprocal of price flexibility is equivalent to the price 

elasticity of demand (Houck, 1965). 𝛼𝑞𝑝 stands for short-term elasticity of supply. It is common to 

approximate the supply function with a vertical line for infra-annual frequencies since it is assumed 

that the quantity supplied is slow to react to price changes because of production lags. That 

argument might hold for production14 but might not hold for total supply augmented by imports. 

Importers might be willing to increase purchases swiftly if their expectations of future harvests 

deteriorate fast or their aggregate income increases substantially. Thus, following Baumeister and 

Hamilton (2019), assume 𝐴0 takes the form 

𝐴0 = [

1 0 −𝛼𝑞𝑝
0 1 −𝛼𝑦𝑝

−𝛼𝑝𝑞 −𝛼𝑝𝑦 1
] 

Bearing in mind that the estimation procedure is indirect, i.e. no distributions for elements of 𝐴0 

are specified, this matrix is used only to infer and justify sign restrictions on the impact matrix 𝐷 =

𝐴0
−1, 

𝐷 = 𝐴0
−1 =

1

1 − 𝛼𝑞𝑝𝛼𝑝𝑞 − 𝛼𝑦𝑝𝛼𝑝𝑦
[

1 − 𝛼𝑦𝑝𝛼𝑝𝑦 𝛼𝑞𝑝𝛼𝑝𝑦 𝛼𝑞𝑝
𝛼𝑦𝑝𝛼𝑝𝑞 1 − 𝛼𝑞𝑝𝛼𝑝𝑞 𝛼𝑦𝑝
𝛼𝑝𝑞 𝛼𝑝𝑦 1

] 

                                                 
13 Although beginning stocks are predetermined, statistical agencies sometimes revise these estimates, 
altering the balance in the market. 
14 Still, producers can leave harvests in the fields if farm-gate prices are lower than the costs of harvesting, 
although these occasions are rare. 
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If one uses conventional economic wisdom, then the supply curve should have a positive slope 

(𝛼𝑞𝑝 > 0), the demand curve a negative one (𝛼𝑝𝑞 < 0), higher income supports the demand for 

grains (𝛼𝑝𝑦 > 0), and the higher price reduces real income (𝛼𝑦𝑝 < 0). Under these assumptions, 

𝐷 will always comply with the following sign restrictions 

[
+ + +
+ + −
− + +

] 

This approach is somewhat different from Kilian and Murphy (2014), who concentrate on the net 

effect of change in price on grain supply (𝑑𝑞𝑝). 

4.2. Four-Variable VAR Model 

Now consider a more sophisticated model that accounts for inter-temporal arbitrage as described 

in the theoretical section. This VAR includes four variables 𝑥𝑡 =

[Δ ln𝑄𝑡
𝑝𝑠

Δ ln 𝐼𝑛𝑐𝑡 Δ ln 𝑃𝑡 Δ(Δ𝐼𝑡 𝑄𝑡
𝑝𝑠⁄ )]

′
 that identify four structural shocks 𝜀𝑡 =

[𝜀𝑡
𝑞
𝜀𝑡
𝑦
𝜀𝑡
𝑝
𝜀𝑡
𝑖]′. Inventories are no longer part of the supply shock 𝜀𝑡

𝑞
, so it reflects only 

unexpected fluctuations in production and imports. The former are most likely related to weather 

events or plant diseases while the latter may originate from trade restrictions introduced by 

exporting nations. As previously, changes in grain demand associated with variations in aggregate 

income fall into the second shock 𝜀𝑡
𝑦
. 

The third shock is usually interpreted as a speculative demand shock, following Kilian and 

Murphy’s (2014) definition of anyone buying oil for the future rather than current consumption as 

a speculator. Then, however, there exist at least two forms of speculation in commodity markets. 

One is related to the precautionary motive: an agent expects higher prices down the road and 

accumulates additional stocks. Another may arise because of the financialization of commodity 

futures markets and the presence of commodity index traders. Unlike agents from the first group, 

these investors are willing to gain exposure to commodity markets or diversify their portfolios and 

not strive to guess the correct value of grains in the future (Janzen et al., 2014). 

This conceptual difference helps us establish correspondence between variables and shocks. If 

stockholders start expecting higher prices tomorrow, they start acquiring additional inventories, 

raising the price until the current price reaches a discounted value of the expected price minus the 

storage cost. Since these expectations are unobservable for now, they end up in inventory 

demand shock 𝜀𝑡
𝑖. This shock is also likely to include involuntary stock accumulation in countries 

that introduce export bans or become unable to export because of exogenous reasons. For 

instance, the blockade of Ukraine’s Black Sea ports that started from the outset of russia’s full-

scale invasion caused the USDA to revise estimates of corn exports down by 6 MMT, while those 

of ending stock, up by 3 MMT. Instead, demand related to a financial activity or other demand not 

otherwise accounted for goes to 𝜀𝑡
𝑝
, which now stands for “pure” speculation. 
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Transforming a theoretical model outlined above into a structural VAR, using the same logic as in 

Baumeister and Hamilton (2019), assume 𝐴0 is 

𝐴0 =

[
 
 
 
 
1 0 −𝛼𝑞𝑝 0

0 1 −𝛼𝑦𝑝 0

−𝛽 −𝛼𝑝𝑦 1 𝛽

−𝛼𝑖𝑞 0 −𝛼𝑖𝑝 1]
 
 
 
 

 

where |𝛼𝑝𝑞| = |𝛼𝑝𝑖| = |𝛽| to adhere to the restriction superimposed by the balance sheet identity. 

It is also assumed that inventories do not react immediately to changes in aggregate income, 

𝛼𝑖𝑦 = 0, as it does not enter the optimization problem of stockholders directly. Therefore, the 

impact matrix 𝐷 = 𝐴0
−1 has the form 

𝐴0
−1 =

1

det(𝐴)
∙

[
 
 
 
 
1 + 𝛽𝛼𝑖𝑝 − 𝛼𝑦𝑝𝛼𝑝𝑦 𝛼𝑝𝑦𝛼𝑞𝑝 𝛼𝑞𝑝 −𝛼𝑞𝑝𝛽

𝛼𝑦𝑝𝛽 − 𝛼𝑦𝑝𝛼𝑖𝑞𝛽 1 + 𝛽𝛼𝑖𝑝 − 𝛼𝑞𝑝𝛽 + 𝛼𝑞𝑝𝛼𝑖𝑞𝛽 𝛼𝑦𝑝 −𝛼𝑦𝑝𝛽

𝛽 − 𝛼𝑖𝑞𝛽 𝑎𝑝𝑦 1 −𝛽

𝛼𝑖𝑞 − 𝛼𝑖𝑞𝛼𝑦𝑝𝛼𝑝𝑦 + 𝛼𝑖𝑝𝛽 𝛼𝑖𝑝𝛼𝑝𝑦 + 𝛼𝑖𝑞𝛼𝑞𝑝𝛼𝑝𝑦 𝛼𝑖𝑝 + 𝛼𝑖𝑞𝛼𝑞𝑝 1 − 𝛼𝑞𝑝𝛽 − 𝛼𝑦𝑝𝛼𝑝𝑦]
 
 
 
 

 

where det(𝐴) = 1 + 𝛽𝛼𝑖𝑝 − 𝛼𝑦𝑝𝛼𝑝𝑦 − 𝛼𝑞𝑝𝛽 + 𝛼𝑞𝑝𝛼𝑖𝑞𝛽. Here, one should make two additional 

educated guesses on the sign of parameters 𝛼𝑖𝑝 and 𝛼𝑖𝑞. The literature on competitive storage 

highlights an inverse relationship between price and inventories, 𝛼𝑖𝑝 < 0. A non-zero value of 𝛼𝑖𝑞 

is primarily motivated by the presence of contemporaneous supply 𝑄𝑡
𝑝𝑠

 in the denominator of the 

quasi-stock-to-use ratio, so its sign is likely to be negative as well. Imagine a positive supply shock: 

𝑄𝑡
𝑝𝑠

 increases, but Δ𝐼𝑡 remains constant on impact15, so the ratio goes down. Assuming the same 

signs of remaining slope parameters as before (and 𝛽 = 𝛼𝑝𝑞 = −𝛼𝑝𝑖 < 0), the matrix of sign 

restrictions is 

[

+ + + +
+ + − −
− + + +
+ − − +

] 

Although the sign of the element 𝑑𝑖𝑞 is unidentified in advance without further magnitude 

restrictions, Δ𝐼𝑡 𝑄𝑡
𝑝𝑠⁄  is small enough to produce a positive net response to a positive supply shock 

whenever at least 4.4% of additional supply ends up in inventories (since 1999, on average, 

inventories represented about 20% of the sum of production and imports and no less than 12%). 

The resulting sign restrictions on the matrix 𝐷 appear consistent with the general understanding 

of the way 𝑥𝑡 would react to 𝜀𝑡 shocks. In particular, positive but transitory aggregate demand or 

                                                 
15 Current supply is not directly present in the optimization problem either. 
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grain-specific demand shocks stimulate stockholders to sell more inventories today (or 

accumulate less) in the expectation that prices declines tomorrow. 

5. Results 

The identification strategy outlined in the previous section does not allow for setting specific 

distributions of underlying structural parameters, but one can still analyze the posteriors. The 

short-term elasticity of supply appeared at the core of the debate on identification restrictions in 

the oil literature (see, for example, Baumeister and Hamilton (2019) and related papers). While 

there is no doubt that supply is inelastic, the magnitude is disputable. 

In agriculture, the discussion can be broadly divided into two strands that barely overlap. The first 

one analyzes the short-term endogenous response of supply to price. As the final production can 

be hit by numerous exogenous shocks, primarily weather and pests, elasticity is usually estimated 

with farmers’ intended supply approximated by sowing areas. Iqbal and Babcock (2018) rely on 

panel time-series data to figure out short- and long-run own-price elasticities of several grains, 

including corn and wheat. Their findings, as well as those of earlier studies mentioned in their 

paper, generally agree that the magnitude of short-term supply elasticity for corn, wheat, or 

aggregate of four major crops16 does not exceed 0.23. Earlier research for the U.S. suggests that 

the upper bound can be even higher (Lin et al., 2000). 

The second strand of literature – especially papers dealing with the data at infra-annual 

frequencies – tends to assume simply that supply is fixed, i.e. its elasticity to price is zero. This 

assumption appears to be less controversial in the agricultural setting as opposed to oil because 

of natural lags in production. Beginning stocks are the outcome of past decisions, so both 𝐼𝑡−1 and 

𝑃𝑟𝑜𝑑𝑡 are, broadly speaking, predetermined. Then the import component (which is often ignored 

in other studies) becomes the only source of responsiveness to price. 

Let a relevant total supply elasticity 𝑒𝑄𝑠 =
𝜕𝑄𝑠

𝜕𝑃

𝑃

𝑄𝑠
. Using the sum rule and the balance sheet identity, 

𝑒𝑄𝑠 =
𝜕𝐼𝑡−1
𝜕𝑃𝑡

𝑃𝑡
𝐼𝑡−1

𝐼𝑡−1
𝑄𝑡
𝑠 +

𝜕𝑃𝑟𝑜𝑑𝑡
𝜕𝑃𝑡

𝑃𝑡
𝑃𝑟𝑜𝑑𝑡

𝑃𝑟𝑜𝑑𝑡
𝑄𝑡
𝑠 +

𝜕𝑀𝑡
𝜕𝑃𝑡

𝑃𝑡
𝑀𝑡

𝑀𝑡
𝑄𝑡
𝑠 = 0 + 0 +

𝜕𝑀𝑡
𝜕𝑃𝑡

𝑃𝑡
𝑀𝑡

𝑀𝑡
𝑄𝑡
𝑠 

Thus, 𝑒𝑄𝑠 is equivalent to import elasticity adjusted by the share of imports in total supply. On 

average, imports constituted 7% to 11% of the relevant supply measure17 of corn and wheat during 

1999–2019. It implies that even relatively inelastic imports would be able to generate a slightly 

positive response of supply to price. The median short-term elasticity of supply 𝛼𝑞𝑝 in the BVAR 

                                                 
16 Some authors, e.g. Roberts and Schlenker (2013), use the combined caloric production of corn, wheat, 
rice, and soybeans. 
17 In the four-variable model, beginning inventories would be excluded. 
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models is from 0.07 to 0.10, with the four-variable model producing a lower estimate and a less 

skewed distribution. 

Figure 3. Distributions of 𝛼𝑞𝑝 

The Baumeister and Hamilton (2019) paper also raises the question of what traditional approaches 

to identification imply for the elasticity of demand. Authors show that the posterior distribution of 

𝛼𝑝𝑞 for the oil market is rather wide, so the elasticity can exceed 1 or 2 in absolute value more 

than 90% of the time. The literature, however, usually treats demand for commodities as inelastic, 

so the distribution is expected to be mostly below these values. 

Structural models of grain markets tend to produce rather low estimates of the elasticity. Miao et 

al. (2011) find that its value should be about 0.19 or within the range of 0.12 to 0.22 to generate a 

distribution of prices with similar characteristics to the observed one. Instead, slightly more elastic 

demand (0.5) would imply fewer spikes in prices and fewer stock-outs. Gouel and Legrand (2017) 

even propose a lower elasticity (in absolute value) of about 0.03 for wheat and up to 0.062 for 

corn to produce a sufficiently high degree of serial correlation in grain prices. Roberts and 

Schlenker (2013), who are guided by the competitive storage model but perform the estimation 

outside of it, still find that the total demand18 elasticity of caloric intake ranges from -0.08 to -0.05, 

depending on the method. 

In contrast, in empirical models that concentrate solely on consumer demand, magnitudes are 

often higher. Seale and Regmi (2006) find that the own-price elasticity of bread and cereals range 

from -0.04 for rich countries (e.g. the U.S.) to -0.49 for poor countries (e.g. Vietnam). A collection 

of demand elasticities, maintained by the USDA up to 2006, also provides quite a diverse set of 

values. They span from about -1.95 to -0.18 for Marshallian or uncompensated demand for wheat, 

maize, grains, cereals, and similar categories. The majority of estimates are still below 1 in 

                                                 
18 Represented there by the sum of consumption and ending inventories. 
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absolute value, with magnitudes around -0.3, -0.5, and -0.7-0.8 appearing more frequently. Finally, 

Adjemian and Smith (2012), who use USDA forecasts to quantify the price flexibility19 of demand 

for corn and soybeans for 1981–2010, find that, on average, over that period corn price flexibility 

was -1.35. This estimate implies an elasticity of -0.74, which is close to the median of the 

distribution from BVAR. When stocks are lower, however, demand turns out to be more inelastic 

(0.44 at a stock-to-use level of 0.2). 

Figure 4. Distributions of 𝛼𝑝𝑞 

Overall, while the estimates produced by the BVAR models appear closer to the upper end of the 

range of demand elasticities in the literature, their absolute values are still mostly below 1: the 

probability of getting elastic demand does not exceed 25%. Unlike other studies, this paper 

combines consumption with exports, which usually is more elastic (Reimer et al., 2012) and, 

hence, can somewhat inflate the estimate (in a similar way that import does). It is also nice to 

acknowledge that distributions of |𝛼𝑝𝑞| = |𝛼𝑝𝑖| = |𝛽| are generally consistent despite the absence 

of any additional restrictions on their magnitudes. 

Baumeister and Hamilton (2019) also propose a direct approach to estimating structural 

parameters. It would allow imposing a sufficiently tight prior to ensure that both demand and supply 

elasticities are lower in their magnitudes than those estimated with sign restrictions only. At the 

time of writing, however, this approach has not been implemented in any known toolbox, so direct 

estimation of structural BVAR is left for further research. 

                                                 
19 In a single-commodity setting, the price flexibility of demand equals the inverse of the price elasticity of 
demand (Adjemian and Smith, 2012). 
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5.1. Impulse Responses 

Figures 5 and 6 show the impulse responses to a one-standard-deviation shock in three- and four-

variable models. Solid lines and shaded areas represent the median response and the 68% error 

bands, respectively. 

Sign restrictions determine the direction of the contemporaneous response of all variables to all 

shocks, but further moves are not restricted. Aggregate demand is the only variable that exhibits 

a kind of exponential decay, while shocks in other variables dissipate quickly. As the elasticity of 

supply 𝛼𝑞𝑝 is not zero, higher price still creates some short-lived increase in supply, likely driven 

by higher imports for precautionary reasons. In turn, supply shocks cause prices to decline, with 

the cost of wheat going down by more than that of corn. Despite that, positive income response is 

stronger for corn, which might be associated with higher industrial use of corn (e.g. for biofuels). 

Figure 5. Impulse Responses of the Three-Variable BVAR  
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Although the dynamic reaction to supply and aggregate demand shocks is similar in both three- 

and four-variable models, inventories help distinguish between the two different types of 

speculation hidden in 𝜀3,𝑡 of the Kilian (2009) model. Both do increase prices, but the response of 

prices to expectations (through inventories) is stronger than to own shocks. These IRFs also 

assume that stockholders know the “nonfundamental” nature of the shock, so they sell their 

inventories, expecting prices to be lower next period. Interestingly, fluctuations in aggregate 

demand cause quite strong and persistent reductions in inventories of corn but not wheat while 

prices converge to a new level fast. It implies that it is harder to compensate for income shocks in 

the corn market. 

Figure 6. Impulse Responses of the Four-Variable BVAR 

Since the models are specified in differences, most of these impulse responses indicate that 

disturbances tend to have a permanent effect on the levels of variables. 
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5.2. Forecast Error Variance Decomposition 

Table 1 provides a six-month-ahead forecast error variance, attributable to structural shocks 

identified by structural BVAR models. As shown in rows 3 and 7, own price shocks tend to explain 

a relatively minor share of variation in prices. Instead, they are dominated by fluctuations in supply 

and aggregate demand that together contribute from 81% to 95% to variation, depending on model 

specification. The latter shocks are slightly more important for the corn market, given its tighter 

connection to oil (ethanol), while the former, for the wheat market. 

Table 1. Forecast Error Variance Decomposition 6-month ahead 

 Shock 

 Corn Wheat 

 𝜀𝑡
𝑞
 𝜀𝑡

𝑦
 𝜀𝑡

𝑝
 𝜀𝑡

𝑖 𝜀𝑡
𝑞
 𝜀𝑡

𝑦
 𝜀𝑡

𝑝
 𝜀𝑡

𝑖 

Three-variable BVAR 

Supply 60.9 7.9 31.2 n/a 59.6 5.7 34.7 n/a 
Aggregate demand 4.8 67.9 27.3 n/a 3.2 52.0 44.8 n/a 
Price 43.8 48.1 8.1 n/a 56.9 38.4 4.7 n/a 

Four-variable BVAR 

Supply 73.2 4.1 6.5 16.2 69.1 3.1 9.4 18.4 
Aggregate demand 10.0 65.7 19.7 4.6 3.1 53.8 38.8 4.2 
Price 29.9 51.4 4.3 14.4 44.8 41.7 3.1 10.4 
Inventories 38.7 9.1 12.5 39.7 26.5 3.6 18.2 51.7 

Grain supply is mostly influenced by own disturbances (about 60%–70% of variation) and 

inventories (16%–18%), as the four-variable model suggests. In turn, grain-specific shocks tend 

to exert notable influence on real incomes, especially those stemming from the wheat market. 

Since wheat is an important staple food for a significant part of the population, higher food prices 

can lower demand for other goods, in this way depressing economic activity in general. As the last 

row of Table 1 shows, inventories are mostly driven by changes in expectations; supply shocks 

account for about 27% and 39% of the forecast error variance in the wheat and corn markets, 

respectively. 

5.3. Historical Decomposition 

The forecast error of price series can be recursively decomposed into contributions from each 

variable in the model, providing insights into the driving forces behind the observed price. Several 

episodes in the recent history of grain markets have caught the attention of economists and market 

observers. 

One such episode was a sharp – more than twofold – spike in prices of corn and wheat during 

2006–2008. Trostle (2008) and other researchers point to several factors that, to varying degrees, 

contributed to these developments. On the one hand, robust average income growth, especially 

in emerging markets, supported a shift in diets to include more meat. It also coincided with the 

expansion of the U.S. ethanol production from corn incentivized by rising oil prices and 

environmental objectives. As the decomposition in Figure 7 shows, these aggregate demand 
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drivers tend to be more important for corn as opposed to wheat, given its wider feed (demand from 

China and India) and industrial (biofuels) use. 

a) corn price 

b) wheat price 

Note: variables are in log changes (scaled by 100) from December 2005. Yellow line shows change in 

price, which includes also trend and exogenous components. 

Figure 7. Historical Decomposition of Prices in pre-GFC and GFC Episode 

On the other hand, adverse weather conditions all across the globe in 2007 produced a second 

consecutive drop in global average yields. On top of it, some countries introduced export 

restrictions, primarily on wheat, which could have limited opportunities to stockpile in expectation 

of higher future prices. That can probably explain the difference in the contributions to corn and 

wheat prices. Janzen et al. (2014), who use financial markets indicators to decompose shocks to 

wheat prices, also find that net supply influence was the major factor shaping the developments 

in 2006–2008. According to BVAR models, index trading and demand factors, not otherwise 

accounted for, played only a minor role. 
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a) corn price 

 
b) wheat price 

Note: variables are in log changes (scaled by 100) from December 2009. Yellow line shows change in 

price, which includes also trend and exogenous components. 

Figure 8. Historical Decomposition of Prices in 2010-2011 

By contrast, during the price increase of 2010–2011, both wheat and corn prices were largely 

driven by two shocks: aggregate demand and supply. The former stemmed from the post-GFC 

economic recovery, which reinforced the general trend of income growth in emerging markets and 

shifts in diet. The latter resulted from a number of detrimental weather events during a short period 

of 10 months (Trostle et al., 2011). Despite trade restrictions introduced by some countries, 

several importers started hunting for additional import volumes from the remaining sources in late 

2010, driven by precautionary motives. It turned the contribution of inventories to wheat prices 

from negative to slightly positive (compared to December 2009). 

Another episode – russia's invasion of Ukraine – happened at a time when grain markets were 

still grappling with the consequences of the Covid-19 pandemic. Corn and wheat prices have risen 
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already by about 40%–50% since late 2020, driven by a combination of recovering demand, 

supply chain issues, and growing transportation costs, as well as drought-reduced production. 

  

a) corn price 

  

b) wheat price 

Note: variables are in log changes (scaled by 100) from December 2021. Yellow line shows change in 

price, which includes also trend and exogenous components. 

Figure 9. Historical Decomposition of Prices During russia's Invasion of Ukraine 

Against this backdrop, a negative supply shock, caused by reduced export from the Black Sea 

region20 and alternative exporters (primarily India due to export restrictions), triggered another 

steep increase in prices. The upward dynamics was reinforced by stockpiling, which, however, 

was involuntary to some extent. For example, if it had not been for the sea blockade, Ukraine 

would have exported the additional amounts that ended up in storage. The launch of the Black 

                                                 
20 The USDA lowered projections of imports for many countries, mainly in the Middle East and North Africa, 
because of lower Black Sea grain export availability and higher world prices. 
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Sea Grain Initiative in late July helped reduce supply pressure somewhat, but poor weather in 

Europe and Argentina outweighed the positive developments. At the same time, the cooling global 

economy amid an increase in uncertainty, a surge in the cost of living, and a global tightening of 

monetary policy was keeping prices at bay. 

5.4. Out-of-Sample Forecasting Performance 

While the models may contribute to the analysis of the market situation, it would also be beneficial 

if they could produce accurate forecasts. To understand the reliability of the models’ predictions, 

I calculate the out-of-sample root mean squared error (RMSE) at a 36-month horizon for the period 

of 2011–2019. VARs are trained on trimmed samples, which include only the months preceding 

the “date of the forecast.” For instance, a model estimated in January 2011 uses the data for 

1999–2010. Such a long subsample (109 out-of-sample forecasts generated) was chosen 

intentionally to check models’ performance not only during the period of relatively stable prices 

but also during substantial volatility. 

As Table 2 shows, this paper generally confirms earlier studies that forecasting commodity prices 

is a nontrivial task. Manescu and Van Robays (2014) show that all the individual methods to 

forecast oil prices, including state-of-the-art VARs, suffer from significant time variations in their 

performance. This problem emerges in grain markets as well. Figure 6A in the Appendix 

demonstrates spaghetti graphs of the predicted versus actual price of corn and wheat. One can 

clearly see that forecasts at horizons of 6+ months in the earlier part of the sample were driven 

primarily by the wrong long-term upward trend. Instead, when prices returned closer to the long-

term average, projections started to resemble the random walk. As for shorter horizons, the 

models sometimes capture the overall dynamics and turning points quite well but fail in other 

instances. This might be primarily related to the fact that it is harder for the model to grasp the 

short-term dynamics of the supply variable, which is heavily hit by exogenous shocks. 

Table 2. Out-of-Sample RMSE (lowest values are in black) 

 Corn Wheat 

Univariate 3-variable 4-variable Univariate 3-variable 4-variable 

RW AR OLS BVAR OLS BVAR RW AR OLS BVAR OLS BVAR 

1 5.39 5.44 5.53 5.48 5.49 5.50 6.23 6.23 6.14 6.13 6.16 6.17 
2 8.09 8.27 8.36 8.33 8.35 8.36 9.33 9.47 9.30 9.30 9.33 9.37 
3 10.05 10.43 10.40 10.40 10.39 10.40 11.38 11.77 11.52 11.56 11.57 11.62 
4 11.37 11.88 11.93 11.99 11.92 11.94 12.52 13.08 13.27 13.32 13.31 13.37 
5 12.72 13.52 13.37 13.42 13.44 13.45 13.76 14.51 14.80 14.86 14.75 14.81 
6 13.51 14.62 14.56 14.61 14.71 14.73 14.68 15.63 16.19 16.25 16.01 16.07 

Although BVAR models do not outperform univariate time series models most of the time, they 

still provide insights into the underlying relationships between variables and reveal the factors 

driving changes in prices. Thus, these structural models can be used for conditional forecasting 

and developing alternative scenarios. 
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6. Robustness 

The results of any VAR model can be sensitive to various assumptions and specifications, such 

as variable choice and identifying restrictions. That is why the paper also covers robustness 

checks that show the sensitivity of the results to the use of alternative aggregate demand 

indicators, zero restrictions on the elasticity of supply, and domestically available supply instead 

of total. 

6.1. Aggregate Demand 

As already mentioned in the data section, the literature suggests several alternative aggregate 

demand indicators. The Kilian index (Index of Global Real Economic Activity or IGREA), 

maintained by the FRB of Dallas, and the OECD+6 industrial production index, extended by 

C. Baumeister, are probably the two widely used gauges nowadays. The former is a measure of 

global demand for industrial commodities based on dry cargo single voyage ocean freight rates 

(Kilian, 2009). The latter is the monthly index of industrial production in the OECD and 6 major 

nonmember countries. 

To check to what extent the results are sensitive to the choice of aggregate demand variable, all 

four models were re-estimated with month-on-month change in alternative series instead of the 

demand factor. All identifying restrictions were the same as previously. 

Figure 7A in the Appendix and Table 3 below compare distributions of demand elasticity 𝛼𝑝𝑞. In 

general, both shapes of distributions and the median values are comparable, with the magnitude 

of 𝛼𝑝𝑞 being generally lower for the demand factor. The same conclusion can be reached 

regarding the elasticity of supply 𝛼𝑞𝑝 (Figure 8A in the Appendix). 

Table 3. Comparison of Medians of Distributions of Elasticity of Demand 

 Demand factor IGREA Industrial production 

Corn 

3-variable BVAR (𝛼𝑝𝑞) -0.6705 -0.7242 -0.7062 

4-variable BVAR (𝛼𝑝𝑞 = 𝛽) -0.4693 -0.5149 -0.4799 

4-variable BVAR (𝛼𝑝𝑖 = 𝛽) -0.5077 -0.5430 -0.4990 

Wheat 

3-variable BVAR (𝛼𝑝𝑞) -0.7124 -0.7240 -0.7543 

4-variable BVAR (𝛼𝑝𝑞 = 𝛽) -0.7676 -0.7634 -0.8381 

4-variable BVAR (𝛼𝑝𝑖 = 𝛽) -0.6004 -0.5932 -0.6468 

Even though important structural parameters are similar, the choice of variable materially 

influences the historical decomposition. In the earlier part of the sample, alternative indicators 

suggested a higher contribution of aggregate demand to corn and wheat prices. By 2005, higher 

values came mainly from the IGREA, given the smaller decline in freight rates in 2001–2002 amid 

a slowdown in the growth of advanced economies and a steeper increase afterward. There is 
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evidence (UN, 2005) that a sluggish supply of vessels coincided with faster growth in global trade, 

particularly with China, driving prices upward. Since 2011, the demand factor produced an 

approximately average contribution – above that of IGREA and below that of the industrial 

production index. 

Figure 10. Contribution of Demand Factor to Decomposition of Corn and Wheat Price 

The models also demonstrate a rather similar forecasting performance, but BVARs with the 

OECD+6 industrial production index produce slightly lower RMSE, likely due to lower variability of 

the index around the linear trend (Tables 2A and 3A in the Appendix). 

6.2. Elasticity of Supply 

A common assumption used in the papers that omit an import component in their supply series is 

to set the short-term elasticity of supply to zero. Given lags in production, when areas sown are 

determined several months in advance, and the static nature of beginning stocks, this assumption 

is often justifiable. Suppose imports turn out to be very inelastic, and the share in total supply 

remains low so that it would drive 𝛼𝑞𝑝 to zero. Then the impact matrix and sign restrictions of the 

three-variable model would be as follows 

𝐴0
−1 =

1

1 − 𝛼𝑦𝑝𝛼𝑝𝑦
[

1 − 𝛼𝑦𝑝𝛼𝑝𝑦 0 0

𝛼𝑦𝑝𝛼𝑝𝑞 1 𝛼𝑦𝑝
𝛼𝑝𝑞 𝛼𝑝𝑦 1

]
𝑦𝑖𝑒𝑙𝑑𝑠
→    [

+ 0 0
+ + −
− + +

] 

Analogously, for the four-variable model, matrices take the form 
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𝐴0
−1 =

1

det(𝐴)
∙

[
 
 
 
 
1 + 𝛽𝛼𝑖𝑝 − 𝛼𝑦𝑝𝛼𝑝𝑦 0 0 0

𝛼𝑦𝑝𝛽 − 𝛼𝑦𝑝𝛼𝑖𝑞𝛽 1 + 𝛽𝛼𝑖𝑝 𝛼𝑦𝑝 −𝛼𝑦𝑝𝛽

𝛽 − 𝛼𝑖𝑞𝛽 𝑎𝑝𝑦 1 −𝛽

𝛼𝑖𝑞 − 𝛼𝑖𝑞𝛼𝑦𝑝𝛼𝑝𝑦 + 𝛼𝑖𝑝𝛽 𝛼𝑖𝑝𝛼𝑝𝑦 𝛼𝑖𝑝 1 − 𝛼𝑦𝑝𝛼𝑝𝑦]
 
 
 
 
𝑦𝑖𝑒𝑙𝑑𝑠
→    [

+ 0 0 0
+ + − −
− + + +
+ − − +

] 

Since 𝛼𝑞𝑝 is now fixed, the remaining parameter to compare is demand elasticity 𝛼𝑝𝑞. As Figure 

9A in the Appendix and Table 4 show, demand is now more elastic, particularly in the three-

variable case, where the median magnitude rises above 2 in absolute value. The discrepancy 

between 𝛽 = 𝛼𝑝𝑞 and 𝛽 = 𝛼𝑝𝑖 has increased for both the corn and wheat four-variable models. 

Table 4. Comparison of Medians of Distributions of Elasticity of Demand 

 Sign restrictions, 𝛼𝑞𝑝 > 0 Zero restrictions, 𝛼𝑞𝑝 = 0 

Corn 

3-variable BVAR (𝛼𝑝𝑞) -0.6705 -2.4059 

4-variable BVAR (𝛼𝑝𝑞 = 𝛽) -0.4693 -0.6040 

4-variable BVAR (𝛼𝑝𝑖 = 𝛽) -0.5077 -0.5157 

Wheat 

3-variable BVAR (𝛼𝑝𝑞) -0.7124 -2.8112 

4-variable BVAR (𝛼𝑝𝑞 = 𝛽) -0.7676 -1.1964 

4-variable BVAR (𝛼𝑝𝑖 = 𝛽) -0.6004 -0.5729 

New restrictions also exert considerable influence on the historical decomposition. The 

contribution of the supply factor drops by more than half (Figure 11), while the impact of other 

shocks, primarily speculative ones, gets inflated (Figure 10A in the Appendix). However, the 

competitive storage model shows that current supply shocks play an important role in price 

determination. Thus, relatively low contributions, especially like the one in the case of corn, are 

somewhat doubtful. 

Figure 11. Contribution of Supply Factor to Decomposition of Corn and Wheat Price  
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6.3. Domestic Supply 

The fundamental USDA identity described in Section 2 equates the total supply of grains to the 

total demand. It is possible, however, to reformulate this equation in terms of domestic supply and 

demand by netting export and import components of the balance sheet. Then, for each country 𝑖, 

domestic supply 𝑄𝑖,𝑡
𝑑𝑠 is the sum of beginning inventories, production, and net imports, equal to 

domestic demand 𝑄𝑖,𝑡
𝑑𝑑 (consumption and stocks), so that 

𝑄𝑖,𝑡
𝑑𝑠 = 𝐼𝑖,𝑡−1 + 𝑃𝑟𝑜𝑑𝑖,𝑡 +𝑀𝑖,𝑡 − 𝑋𝑖,𝑡 = 𝐶𝑜𝑛𝑠𝑖,𝑡 + 𝐼𝑖,𝑡 = 𝑄𝑖,𝑡

𝑑𝑑 

The only difference between the two identities is in the position of exports. Whenever a country is 

a net importer, additional imports augment production while the domestic supply of a net exporter 

is reduced. Next, the values are combined across countries to produce world totals. Since 

exporting countries dominate the sample, the domestic supply is lower than the total supply. Given 

a nonzero aggregate net import component, the assumption of responsive domestic supply to 

price is still valid. Nevertheless, there is a difference in the treatment of supply elasticity associated 

with the domestic supply. Using the same approach as in Section 5,  

𝑒𝑄𝑑𝑠 =
𝜕𝑁𝑀𝑡
𝜕𝑃𝑡

𝑃𝑡
𝑁𝑀𝑡

𝑁𝑀𝑡

𝑄𝑡
𝑑𝑠  

where 𝑁𝑀𝑡 stands for net import, and 𝑄𝑡
𝑑𝑠 is domestic supply. The ratio 𝑁𝑀𝑡/𝑄𝑡

𝑑𝑠 is negative; it 

steadily declines from approximately -6% to -10% for wheat and fluctuates around -4% for corn. 

The relationship between price and net import has become negative as well, reflecting the 

downward-sloping demand for exports. As a result, the overall supply elasticity remains small and 

positive. 

Table 5 and Figure 11A in the Appendix demonstrate that model properties remain virtually 

unchanged, even though it could have been expected that all structural parameters would decline 

in absolute value. The elasticity of demand no longer contains the more elastic export component, 

but the impact on its magnitude is only marginal. Thus, the estimates remain closer to those of 

Adjemian and Smith (2012). The distributions of 𝛽-equivalent parameters in four-variable models 

generally remain aligned. Consistency between 𝛼𝑝𝑞 and 𝛼𝑝𝑖 is relatively better for wheat and 

somewhat worse for corn. 

The historical decomposition of the wheat price remains rather robust to the change in the supply 

variable, as shown in Figure 12, except for the three-variable total-supply model that assigns more 

importance to supply shocks in the earlier part of the sample. The contribution of the demand 

factor to price increases appears slightly higher in 2002–2008 than in baseline models, while for 

other variables, changes are relatively minor. The differences are more pronounced in the case 

of corn, where the impact of supply shocks is reduced markedly. This effect is partially 
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compensated by an increase in the role of own price shocks, especially in the four-variable corn 

model. 

Table 5. Comparison of Medians of Distributions of Elasticity of Demand 

 Total supply Domestic supply 

Corn 

3-variable BVAR (𝛼𝑞𝑝) 0.1007 0.1002 

3-variable BVAR (𝛼𝑝𝑞) -0.6705 -0.7600 

4-variable BVAR (𝛼𝑞𝑝) 0.0781 0.0759 

4-variable BVAR (𝛼𝑝𝑞 = 𝛽) -0.4693 -0.4378 

4-variable BVAR (𝛼𝑝𝑖 = 𝛽) -0.5077 -0.4928 

Wheat 

3-variable BVAR (𝛼𝑞𝑝) 0.0882 0.0865 

3-variable BVAR (𝛼𝑝𝑞) -0.7124 -0.6909 

4-variable BVAR (𝛼𝑞𝑝) 0.0725 0.0744 

4-variable BVAR (𝛼𝑝𝑞 = 𝛽) -0.7676 -0.6423 

4-variable BVAR (𝛼𝑝𝑖 = 𝛽) -0.6004 -0.6571 

The models also demonstrate a similar forecasting performance relative to baseline (see Table 

4A in the Appendix), with only the four-variable wheat domestic-supply model outperforming its 

total-supply alternative and the random walk in the first three periods. 

Figure 12. Contribution of Demand Factor to Decomposition of Corn and Wheat Price 

7. Conclusions 

This paper makes the first known attempt to estimate monthly VAR models for corn and wheat 

markets that directly account for supply and inventory in a way Kilian (2009) and Kilian and Murphy 

(2014) do. To overcome the limited availability of high-frequency data on production and stocks, 

it uses projections of supply variables from the monthly WASDE report. These projections are 
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adjusted to reflect only the current marketing year and then are transformed into revisions. The 

paper also develops an indicator of aggregate demand for grain markets using an adapted version 

of the Baumeister et al. (2020) approach. 

I estimate the models with Bayesian methods and identify the structural shocks using sign 

restrictions. Although indirect estimation of the structural matrix does not allow for setting priors, 

posterior distributions of structural parameters are generally consistent with theory and earlier 

studies. Both demand and supply functions appear inelastic in the short term, with the elasticity of 

the former being higher than that of the latter. Future research can elaborate upon these findings 

and compare the outcomes of the direct estimation of structural matrices, as in Baumeister and 

Hamilton (2019), with the indirect one. This estimation procedure would allow accounting for 

parameter restrictions and checking whether it significantly influences model performance. 

The models produce quite reasonable historical decompositions of price during important 

episodes in 2006–2008, 2010–2011, and 2022–2023. Aggregate demand is a more important 

factor for corn rather than wheat, given its broader feed and industrial use, including biofuels. In 

addition, the accumulation of inventories played a larger role for corn in 2006–2008 but contributed 

to both prices in 2022–2023. Instead, the wheat price has been mostly driven by relatively sluggish 

supply during a considerable part of the sample. 

The models can become a valuable tool for the analysis of current developments, as well as for 

conditional forecasting and building alternative scenarios. At the same time, unfortunately, they 

do not generate forecasts that would be consistently superior to the random walk. 

I also see an attempt to incorporate explicitly next-MY expectations in the models as a prospective 

avenue for further research. It could shed more light on the stock-building motives of speculators, 

who can expect higher prices next period because of either supply shortfalls or higher future 

demand, and improve forecasting performance. Nevertheless, since the WASDE series are 

incomplete (they cover only part of the next MY, usually 1 to 5 months), one should build another 

series, which is easier said than done. Although data from weather maps – precipitation, sunlight, 

or NDVI – can be very informative of future yield developments, a supplementary model is required 

to transform it into comparable production estimates (e.g., the WOFOST model used by the 

European Commission). The models could also benefit from a more elaborate treatment of export-

import shocks and effects from redistributing stocks across countries, as trade restrictions and 

disruptions can play increasingly important roles in a fragmented world.  
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APPENDIX A 

Tables 

Table 1A. Countries and Regions in WASDE Reports 

Corn 

Argentina Egypt South Africa 

Brazil Japan South Korea 

Canada Mexico Ukraine 

China russia United States 

European Union Southeast Asia***  

Wheat 

Argentina European Union russia 

Australia India Selected Mideast** 

Brazil Kazakhstan Southeast Asia*** 

Canada North Africa* Ukraine 

China Pakistan United States 

* Algeria, Egypt, Libya, Morocco, and Tunisia.  

** Lebanon, Iraq, Iran, Israel, Jordan, Kuwait, Saudi Arabia, Yemen, United Arab Emirates, and Oman. 

*** Indonesia, Malaysia, Philippines, Thailand, and Vietnam. 

 

 

Table 2A. Out-of-Sample RMSE of Models with IGREA as Aggregate Demand Indicator 

 Corn Wheat 

 3-variable 4-variable 3-variable 4-variable 

 BVAR BVAR BVAR BVAR 

1 5.59 5.55 6.12 6.18 

2 8.40 8.46 9.38 9.45 

3 10.46 10.49 11.63 11.75 

4 11.93 11.99 13.35 13.43 

5 13.34 13.46 14.91 14.91 

6 14.55 14.79 16.29 16.16 

Source: own elaboration. 
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Table 3A. Out-of-Sample RMSE of models with industrial production index as aggregate demand indicator 

 Corn Wheat 

 3-variable 4-variable 3-variable 4-variable 

 BVAR BVAR BVAR BVAR 

1 5.41 5.40 6.09 6.07 

2 8.12 8.12 9.19 9.18 

3 10.19 10.14 11.35 11.40 

4 11.80 11.67 13.17 13.21 

5 13.22 13.18 14.76 14.74 

6 14.36 14.38 16.13 15.95 

Source: own elaboration. 

 

 

Table 4A. Out-of-sample RMSE of models with domestic supply 

 Corn Wheat 

 3-variable 4-variable 3-variable 4-variable 

 BVAR BVAR BVAR BVAR 

1 5.48 5.52 6.16 6.09 

2 8.36 8.39 9.34 9.16 

3 10.43 10.35 11.52 11.36 

4 12.02 11.80 13.26 13.09 

5 13.47 13.28 14.79 14.62 

6 14.69 14.48 16.14 15.91 

Source: own elaboration. 
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APPENDIX B. Figures 

 

Source: Sobolev (2021). 

Figure 1A. Seasonality in Wheat and Corn Stocks on the Example of Ukraine 
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Source: USDA (2022). 

Figure 2A. Seasonality in Wheat Exports on the Example of Ukraine (by month, million metric tons) 

 

Note: burgundy lines were added to the USDA calendar by the author based on PSD definitions of 

marketing years. 

Source: USDA International Production Assessment Division. 

Figure 3A. Crop Calendar for Corn (countries ranked by descending production 2021) 
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Note: burgundy lines were added to the USDA calendar by the author based on PSD definitions of 

marketing years. 

Source: USDA International Production Assessment Division. 

Figure 4A. Crop Calendar for Wheat (countries ranked by descending production 2021) 

 

 

Source: own elaboration. 

Figure 5A. Comparison of the Sequences of Wheat Supply Data Release for the U.S., Ukraine, and 

Argentina 
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Source: own elaboration. 

Figure 6A. Out-of-Sample Forecasts of Corn and Wheat Price 
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Source: own elaboration. 

Figure 7A. Distributions of Elasticity of Demand in Models with Different Aggregate Demand Variable 
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Source: own elaboration. 

Figure 8A. Distributions of Elasticity of Supply in Models with Different Aggregate Demand Variable 
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Source: own elaboration. 

Figure 9A. Distributions of Elasticity of Demand in Models with Zero Elasticity of Demand 
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Source: own elaboration. 

Figure 10A. Contributions of Speculative Shocks to decomposition of corn and wheat price 
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Source: own elaboration. 

Figure 11A. Distributions of Elasticities of Supply and Demand in Models with Total and Domestic Supply 
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Source: own elaboration. 

Figure 12A. Contributions of Demand and Speculative Shocks to Decomposition of Corn and Wheat Price 
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